DOI QR코드

DOI QR Code

Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844

  • Colussi, Francieli (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Serpa, Viviane (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Da Silva Delabona, Priscila (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Manzine, Livia Regina (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Voltatodio, Maria Luiza (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Alves, Renata (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Mello, Bruno Luan (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Nei, Pereira Jr. (Centro de Tecnologia, Escola de Quimica, Laboratorio de Desenvolvimento de Bioprocessos (LaDeBio), Universidade Federal do Rio de Janeiro) ;
  • Farinas, Cristiane Sanches (EMBRAPA Instrumentacao Agropecuaria) ;
  • Golubev, Alexander M. (Department of Molecular and Radiation Biophysics, St. Petersburg Nuclear Physics Institute) ;
  • Santos, Maria Auxiliadora Morim (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo) ;
  • Polikarpov, Igor (Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo)
  • Received : 2010.10.18
  • Accepted : 2011.05.27
  • Published : 2011.08.28

Abstract

Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed ${\alpha}$- helices and ${\beta}$-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of $50^{\circ}C$ with specific activities against Avicel and p-nitrophenyl-${\beta}$-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

Keywords

References

  1. Aboul- Enein, F. A., E. Serour, and T. Hussein. 2010. Purification and characterization of a novel thermoactive cellulase from thermophilic actinomycetes isolated from soil sample of Egypt. Int. J. Acad. Res. 2: 81-86.
  2. Aden, A., M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, et al. 2002. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. National Renewable Energy Laboratory Golden, Colorado.
  3. Arantes, V. and J. N. Saddler. 2010. Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis. Biotech. Biofuels 3: 1-11. https://doi.org/10.1186/1754-6834-3-1
  4. Bailey, S. 1994. The CCP4 suite : Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50: 760- 763. https://doi.org/10.1107/S0907444994003112
  5. Bakare, M. K., I. O. Adewale, A. Ajayi, A. I. Okoh, and O. O. Shonukan. 2005. Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. African J. Biotechnol. 4: 898-904.
  6. Biochemistry IUo. 1961. Report of the Commission on Enzymes. Pergamon Press Oxford.
  7. Biochemistry IUo. 1965. Enzyme Nomenclature: Recommendations 1964 of the International Union of Biochemistry. Elsevier. Amesterdam.
  8. Boer, H., T. T. Teeri, and A. Koivula. 2000. Characterization of Trichoderma reesei cellobiohydrolase CeI7A secreted from Pichia pastoris using two different promoters. Biotech. Bioeng. 69: 486-494. https://doi.org/10.1002/1097-0290(20000905)69:5<486::AID-BIT3>3.0.CO;2-N
  9. Bradford, M. M. 1976. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  10. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  11. Carpita, N. C. and D. M. Gibeaut. 1993. Structural models of primary-cell walls in flowering plants: Consistency of molecular structure with the physical properties of the wall during growth. Plant J. 3: 1-30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x
  12. Castro, A., M. C. Ferreira, J. Cd. Cruz, K. C. R. Pedro, D. F. Carvalho, S. G. F. Leite, and N. Pereira Jr. 2010. High-yield endoglucanase production by Trichoderma harzianum IOC- 3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res. doi:10.4061/2010/854526.
  13. Claeyssens, S., A. Lavoinne, M. Freselragot, B. Bois-Joyeux, M. Chanez, and J. Peret. 1990. Metabolic changes in rats fed a low protein-diet during post-weaning growth. Metabol. Clin. Exp. 39: 676-681. https://doi.org/10.1016/0026-0495(90)90100-Q
  14. Cosgrove, D. J. 2005. Growth of the plant cell wall. Nature Rev Molec. Cell Biol. 6: 850-861. https://doi.org/10.1038/nrm1746
  15. Davies, G. and B. Henrissat. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853-859. https://doi.org/10.1016/S0969-2126(01)00220-9
  16. Deshpande, M. V., K. E. Eriksson, and L. G. Pettersson. 1984. An assay for selective determination of exo-1,4,-beta-glucanase in a mixture of cellulolytic enzymes. Anal. Biochem. 138: 481- 487. https://doi.org/10.1016/0003-2697(84)90843-1
  17. Divne, C., J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Petterson, J. K. C. Knowles, et al. 1994. The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase-I from Trichoderma reesei. Science 265: 524-528. https://doi.org/10.1126/science.8036495
  18. Divne, C., J. Stahlberg, T. T. Teeri, and J. T. Alwyn. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Molec. Biol. 275: 309-325. https://doi.org/10.1006/jmbi.1997.1437
  19. Eftink, M. R. 2000. Use of fluorescence spectroscopy as thermodynamics tool. Energ. Biol. Macromolec. 323: 459-473.
  20. Fischer, H., M. Oliveira Neto, H. B. Napolitano, I. Polikarpov, and A. Craievich. 2010. The molecular weight of protein in solution can be determined for a single SAXS measurement on a relative scale. J. Appl. Crystallogr. 43: 101-109. https://doi.org/10.1107/S0021889809043076
  21. Fischer, H., M. Oliveira Neto, H. B. Napolitano, I. Polikarpov, and A. Craievich. 2010. The molecular weight of protein in solution can be determined for a single SAXS measurement on a relative scale. J. Appl. Crystallogr. 43: 101-109. https://doi.org/10.1107/S0021889809043076
  22. Gusakov, A. V., A. P. Sinitsyn, T. N. Salanovich, F. E. Bukhtojarov, A. V. Markov, B. B. Ustinov, et al. 2005. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme Microbial Technol. 36: 57-69. https://doi.org/10.1016/j.enzmictec.2004.03.025
  23. Hammersley, A. P. 1997. FIT2D: An Introduction and Overview. ESRF Internal Report.
  24. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J. 280: 309-316. https://doi.org/10.1042/bj2800309
  25. Henrissat, B. 1994. Cellulases and their interaction with cellulose. Cellulose 1: 169-196. https://doi.org/10.1007/BF00813506
  26. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J. 293: 781-788. https://doi.org/10.1042/bj2930781
  27. Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust. 2007. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 316: 804-807.
  28. Irwin, D. C., M. Spezio, L. P. Walker, D. B. Wilson. 1993. Activity studies of 8 purified cellulases: Specificity, synergism, and binding domain effects. Biotechnol. Bioeng. 42: 1002-1013. https://doi.org/10.1002/bit.260420811
  29. Jager, G., Z. J. Wu, K. Garschhammer, P. Engel, T. Klement, R. Rinaldi, et al. 2010. Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics. Biotechnol. Biofuels 3: 18. https://doi.org/10.1186/1754-6834-3-18
  30. Jeoh, T., W. Michener, M. E. Himmel, S. R. Decker, and W. S. Adney. 2008. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels 1: 10. https://doi.org/10.1186/1754-6834-1-10
  31. Kraulis, P. J., G. M. Clore, M. Nilges, T. A. Jones, G. Pettersson, J. Knowles, and A. M. Gronenborn. 1989. Determination of the 3-dimensional solutions structure of the C-terminal domain of cellobiohydrolase-I from Trichoderma reesei: A study using nuclear magnetic ressonance and hybrid distance geometry dynamical simulated annealing. Biochemistry 28: 7241-7257. https://doi.org/10.1021/bi00444a016
  32. Laemmli, U. K. 1970. Cleavage of structrural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-691. https://doi.org/10.1038/227680a0
  33. Lahjouji, K., R. Storms, Z. Xiao, K. B. Joung, Y. Zheng, J. Powlowski, et al. 2007. Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl. Microbiol. Biotechnol. 75: 337-346. https://doi.org/10.1007/s00253-006-0824-5
  34. Mandels, M. and J. Weber. 1969. Production of cellulases. Adv. Chem. Series 95: 391-398.
  35. Mansfield, S. D., C. Mooney, and J. N. Saddler. 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Progress 15: 804-816. https://doi.org/10.1021/bp9900864
  36. Margeot, A., B. Hahn-Hagerdal, M. Edlund, R. Slade, F. Monot, et al. 2009. New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. 20: 372-380. https://doi.org/10.1016/j.copbio.2009.05.009
  37. Munoz, I. G., W. Ubhayasekera, H. Henriksson, I. Szabo, G. Pettersson, G. Johansson, et al. 2001. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: Crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 angstrom resolution and homology models of the isozymes. J. Molecul. Biol. 314: 1097-1111. https://doi.org/10.1006/jmbi.2000.5180
  38. Nieves, R. A., C. I. Ehrman, W. S. Adney, R. T. Elander, and M. E. Himmel. 1998. Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J. Microbiol. Biotechnol. 14: 301-304.
  39. Pollastri, G. and A. McLysaght. 2005. Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics 21: 1719-1720. https://doi.org/10.1093/bioinformatics/bti203
  40. Prasad, S., A. Singh, and H. C. Joshi. 2007. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50: 1-39. https://doi.org/10.1016/j.resconrec.2006.05.007
  41. Raghothama, S., P. J. Simpson, L. Szabo, T. Nagy, H. Gilbert, and M. P. Williamson. 2000. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry 39: 978-984. https://doi.org/10.1021/bi992163+
  42. Shin, K., Y. H. Kim, M. Jeya, J. K. Lee, and Y. S. Kim. 2010. Purification and characterization of a thermostable cellobiohydrolase from Fomitopsis pinicola. J. Microbiol. Biotechnol. 20: 1681-1688.
  43. Sreerama, N. and R. W. Woody. 2000. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287: 252-260. https://doi.org/10.1006/abio.2000.4880
  44. Stahlberg, J., C. Divne, A. Koivula, K. Piens, M. Claeyssens, T. T. Teeri, et al. 1996. Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J. Molec. Biol. 264: 337-349. https://doi.org/10.1006/jmbi.1996.0644
  45. Stahlberg, J., G. Johansson, and G. Pettersson. 1991. A new model for enzymatic hydrolysis of cellulose based on the 2- domains structure of cellobiohydrolase-I. Biotechnology 9: 286-290. https://doi.org/10.1038/nbt0391-286
  46. Stals, I., K. Sandra, S. Geysens, R. Contreras, J. Van Beeumen, M. Claeyssens, et al. 2004. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14: 713-724. https://doi.org/10.1093/glycob/cwh080
  47. Tarentino, A. L. and T. H. Plummer Jr. 1994. Deglycosylation of asparagine-linked glycans: Purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enz. 230: 44-57.
  48. Teeri, T. T. 1997. Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends Biotechnol. 15: 160-167. https://doi.org/10.1016/S0167-7799(97)01032-9
  49. Teeri, T. T., A. Koivula, T. Reinikainen, L. Ruohonen, M. Srisodsuk, C. Divne, et al. 1994. Hydrolysis of crystaline cellulose by native and engineered Trichoderma reesei cellulases. Abstr. Papers Am. Chem. Soc. 207: 21-AGFD.
  50. Valaskova, V. and P. Baldrian. 2006. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus: Production of extracellular enzymes and characterization of the major cellulases. Microbiology 152: 3613-3622. https://doi.org/10.1099/mic.0.29149-0
  51. von Ossowski, I., J. Stahlberg, A. Koivula, K. Piens, D. Becker, H. Boer, et al. 2003. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A. A comparison with Phanerochaete chrysosporium Cel7D. J. Molec. Biol. 333: 817-829. https://doi.org/10.1016/S0022-2836(03)00881-7
  52. Wang, L. S., J. Liu, Y. Z. Zhang, Y. Zhao, and P. J. Gao. 2003. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysis. J. Molec. Catal. B Enzymatic 24: 27-38.
  53. Wolfenden, R. and M. J. Snider. 2001. The depth of chemical time and the power of enzymes as catalysts. Accounts Chem. Res. 34: 938-945. https://doi.org/10.1021/ar000058i
  54. Wood, T. M. and K. M. Bhat. 1988. Methods for measuring cellulase activities. Methods Enz. 160: 87-112.
  55. Wu, S. T., J. Skolnick, and Y. Zhang. 2007. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 5: 17. https://doi.org/10.1186/1741-7007-5-17
  56. Zhang, Y. H. P., M. E. Himmel, and J. R. Mielenz. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  57. Zhang, Y. H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 88: 797-824. https://doi.org/10.1002/bit.20282
  58. Zhou, J., Y. H. Wang, J. Chu, Y. P. Zhuang, S. L. Zhang, and P. Yin. 2008. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100- 14. Bioresour. Technol. 99: 6826-6833. https://doi.org/10.1016/j.biortech.2008.01.077

Cited by

  1. Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum vol.41, pp.1, 2011, https://doi.org/10.1007/s00249-011-0762-8
  2. Joint X‐ray crystallographic and molecular dynamics study of cellobiohydrolase I from Trichoderma?harzianum: deciphering the structural features of cellobiohydrolase catalytic activity vol.280, pp.1, 2011, https://doi.org/10.1111/febs.12049
  3. Mini-review: Brazilian fungi diversity for biomass degradation vol.60, pp.None, 2011, https://doi.org/10.1016/j.fgb.2013.07.005
  4. Family 1 carbohydrate binding-modules enhance saccharification rates vol.4, pp.1, 2014, https://doi.org/10.1186/s13568-014-0036-9
  5. Transcriptome Profile of Trichoderma harzianum IOC-3844 Induced by Sugarcane Bagasse vol.9, pp.2, 2011, https://doi.org/10.1371/journal.pone.0088689
  6. Insights into the structure and function of fungal β‐mannosidases from glycoside hydrolase family?2 based on multiple crystal structures of the Trichoderma?harzianum enzyme vol.281, pp.18, 2011, https://doi.org/10.1111/febs.12894
  7. Fungal Cellulases vol.115, pp.3, 2011, https://doi.org/10.1021/cr500351c
  8. ETHANOL PRECIPITATION OF GLYCOSYL HYDROLASES PRODUCED BY Trichoderma harzianum P49P11 vol.32, pp.2, 2011, https://doi.org/10.1590/0104-6632.20150322s00003268
  9. Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology vol.6, pp.1, 2011, https://doi.org/10.1007/s13205-015-0356-8
  10. Cellulose fiber size defines efficiency of enzymatic hydrolysis and impacts degree of synergy between endo- and exoglucanases vol.25, pp.3, 2018, https://doi.org/10.1007/s10570-018-1700-z
  11. Cellulases from Thermophiles Found by Metagenomics vol.6, pp.3, 2011, https://doi.org/10.3390/microorganisms6030066
  12. A Novel Cellobiohydrolase I (CBHI) from Penicillium digitatum: Production, Purification, and Characterization vol.192, pp.1, 2011, https://doi.org/10.1007/s12010-020-03307-9
  13. Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds vol.10, pp.1, 2011, https://doi.org/10.1186/s13568-020-00975-y