DOI QR코드

DOI QR Code

Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond

  • Lee, Soo-Jin (Department of Molecular Science and Technology, Ajou University) ;
  • Yoon, Sung-Hwa (Department of Molecular Science and Technology, Ajou University) ;
  • Doh, Kyung-Oh (Department of Physiology, College of Medicine, Yeungnam University)
  • Received : 2011.05.23
  • Accepted : 2011.06.01
  • Published : 2011.08.28

Abstract

Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.

Keywords

References

  1. Anwer, K., M. N. Barnes, J. Fewell, D. H. Lewis, and R. D. Alvarez. 2010. Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther. 17: 360-369. https://doi.org/10.1038/gt.2009.159
  2. Astriab-Fisher, A., D. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. 2002. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: Effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res. 19: 744-754. https://doi.org/10.1023/A:1016136328329
  3. Bulaj, G., T. Kortemme, and D. P. Goldenberg. 1998. Ionizationreactivity relationships for cysteine thiols in polypeptides. Biochemistry 37: 8965-8972. https://doi.org/10.1021/bi973101r
  4. Cheng, S., W. S. Craig, D. Mullen, J. F. Tschopp, D. Dixon, and M. D. Pierschbacher. 1994. Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin alpha IIb beta 3 antagonists. J. Med. Chem. 37: 1-8. https://doi.org/10.1021/jm00027a001
  5. Elmquist, A., M. Lindgren, T. Bartfai, and U. Langel. 2001. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp. Cell Res. 269: 237-244. https://doi.org/10.1006/excr.2001.5316
  6. Frankel, A. D. and C. O. Pabo. 1988. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55: 1189- 1193. https://doi.org/10.1016/0092-8674(88)90263-2
  7. Green, M. and P. M. Loewenstein. 1988. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55: 1179-1188. https://doi.org/10.1016/0092-8674(88)90262-0
  8. Hu, Y., K. Li, L. Wang, S. Yin, Z. Zhang, and Y. Zhang. 2010. Pegylated immuno-lipopolyplexes: A novel non-viral gene delivery system for liver cancer therapy. J. Control. Release 144: 75-81. https://doi.org/10.1016/j.jconrel.2010.02.005
  9. Hyndman, L., J. L. Lemoine, L. Huang, D. J. Porteous, A. C. Boyd, and X. Nan. 2004. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J. Control. Release 99: 435-444. https://doi.org/10.1016/j.jconrel.2004.07.023
  10. Ignatovich, I. A., E. B. Dizhe, A. V. Pavlotskaya, B. N. Akifiev, S. V. Burov, S. V. Orlov, and A. P. Perevozchikov. 2003. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. 278: 42625- 42636. https://doi.org/10.1074/jbc.M301431200
  11. Joliot, A., C. Pernelle, H. Deagostini-Bazin, and A. Prochiantz. 1991. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA 88: 1864-1868. https://doi.org/10.1073/pnas.88.5.1864
  12. Karmali, P. P. and A. Chaudhuri. 2007. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med. Res. Rev. 27: 696-722. https://doi.org/10.1002/med.20090
  13. Kawase, Y., D. Ladage, and R. J. Hajjar. 2011. Rescuing the failing heart by targeted gene transfer. J. Am. Coll. Cardiol. 57: 1169-1180. https://doi.org/10.1016/j.jacc.2010.11.023
  14. Lanford, R. E., P. Kanda, and R. C. Kennedy. 1986. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575-582. https://doi.org/10.1016/0092-8674(86)90883-4
  15. Lo, S. L. and S. Wang. 2008. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 29: 2408- 2414. https://doi.org/10.1016/j.biomaterials.2008.01.031
  16. Maeda, H., J. Wu, T. Sawa, Y. Matsumura, and K. Hori. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65: 271-284. https://doi.org/10.1016/S0168-3659(99)00248-5
  17. McKenzie, D. L., K. Y. Kwok, and K. G. Rice. 2000. A potent new class of reductively activated peptide gene delivery agents. J. Biol. Chem. 275: 9970-9977. https://doi.org/10.1074/jbc.275.14.9970
  18. McKenzie, D. L., E. Smiley, K. Y. Kwok, and K. G. Rice. 2000. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem. 11: 901-909. https://doi.org/10.1021/bc000056i
  19. Moon, I. J., H. Kang, Y. B. Seu, B. C. Chang, D. K. Song, and J. G. Park. 2007. Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex. Int. J. Mol. Med. 20: 429-437.
  20. Oh, Y. K. and T. G. Park. 2009. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 61: 850-862. https://doi.org/10.1016/j.addr.2009.04.018
  21. Pappalardo, J. S., V. Quattrocchi, C. Langellotti, S. Di Giacomo, V. Gnazzo, V. Olivera, et al. 2009. Improved transfection of spleen-derived antigen-presenting cells in culture using TATpliposomes. J. Control. Release 134: 41-46. https://doi.org/10.1016/j.jconrel.2008.11.006
  22. Park, Y., K. Y. Kwok, C. Boukarim, and K. G. Rice. 2002. Synthesis of sulfhydryl cross-linking poly(ethylene glycol)-peptides and glycopeptides as carriers for gene delivery. Bioconjug. Chem. 13: 232-239. https://doi.org/10.1021/bc010070a
  23. Piron, J., K. L. Quang, F. Briec, J. C. Amirault, A. L. Leoni, L. Desigaux, et al. 2008. Biological pacemaker engineered by nonviral gene transfer in a mouse model of complete atrioventricular block. Mol. Ther. 16: 1937-1943. https://doi.org/10.1038/mt.2008.209
  24. Pooga, M., M. Hallbrink, M. Zorko, and U. Langel. 1998. Cell penetration by transportan. FASEB J. 12: 67-77. https://doi.org/10.1096/fasebj.12.1.67
  25. Qin, B. and K. Cheng. 2011. Silencing of the IKKepsilon gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Res. 12: R74.
  26. Rudolph, C., C. Plank, J. Lausier, U. Schillinger, R. H. Muller, and J. Rosenecker. 2003. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278: 11411-11418. https://doi.org/10.1074/jbc.M211891200
  27. Siprashvili, Z., F. A. Scholl, S. F. Oliver, A. Adams, C. H. Contag, P. A. Wender, and P. A. Khavari. 2003. Gene transfer via reversible plasmid condensation with cysteine-flanked, internally spaced arginine-rich peptides. Hum. Gene Ther. 14: 1225-1233. https://doi.org/10.1089/104303403767740768
  28. Torchilin, V. P., T. S. Levchenko, R. Rammohan, N. Volodina, B. Papahadjopoulos-Sternberg, and G. G. D'Souza. 2003. Cell transfection in vitro and in vivo with nontoxic TAT peptideliposome- DNA complexes. Proc. Natl. Acad. Sci. USA 100: 1972-1977. https://doi.org/10.1073/pnas.0435906100
  29. Vijayanathan, V., T. Thomas, and T. J. Thomas. 2002. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41: 14085-14094. https://doi.org/10.1021/bi0203987
  30. Vives, E., P. Brodin, and B. Lebleu. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010-16017. https://doi.org/10.1074/jbc.272.25.16010
  31. Wadia, J. S., R. V. Stan, and S. F. Dowdy. 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10: 310-315. https://doi.org/10.1038/nm996
  32. Yamano, S., J. Dai, C. Yuvienco, S. Khapli, A. M. Moursi, and J. K. Montclare. 2011. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J. Control. Release.
  33. Zhang, S., B. Zhao, H. Jiang, B. Wang, and B. Ma. 2007. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release 123: 1-10. https://doi.org/10.1016/j.jconrel.2007.07.016

Cited by

  1. Improving the Endosomal Escape of Cell-Penetrating Peptides and Their Cargos: Strategies and Challenges vol.5, pp.11, 2011, https://doi.org/10.3390/ph5111177
  2. Efficient in vivo gene delivery using modified Tat peptide with cationic lipids vol.36, pp.7, 2014, https://doi.org/10.1007/s10529-014-1497-2
  3. Validation of Heterodimeric TAT-NLS Peptide as a Gene Delivery Enhancer vol.25, pp.6, 2011, https://doi.org/10.4014/jmb.1411.11074
  4. Cationic cell-penetrating peptides as vehicles for siRNA delivery vol.6, pp.4, 2011, https://doi.org/10.4155/tde.15.2
  5. Strategies to stabilize cell penetrating peptides for in vivo applications vol.6, pp.10, 2015, https://doi.org/10.4155/tde.15.51
  6. Engineering liposomal nanoparticles for targeted gene therapy vol.24, pp.8, 2011, https://doi.org/10.1038/gt.2017.41
  7. Synthesis and Preclinical Evaluation of the Fibrin-Binding Cyclic Peptide 18F-iCREKA: Comparison with Its Contrasted Linear Peptide vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/6315954