멀티 터널링을 이용한 고속 차량에서 QoS 보장 IP 이동성 관리 방법

QoS-Guaranteed IP Mobility Management For Fast Moving Vehicles Using Multiple Tunnels

  • 천승만 (경북대학교 전자전기컴퓨터학부) ;
  • 나재욱 (경북대학교 전자전기컴퓨터학부) ;
  • 박종태 (경북대학교 전자전기컴퓨터학부)
  • Chun, Seung-Man (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Nah, Jae-Wook (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Park, Jong-Tae (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 투고 : 2011.08.30
  • 발행 : 2011.11.25

초록

본 논문에서는 다중 무선 네트워크 인터페이스를 가진 고속 차량의 인터넷 서비스에 대한 QoS (Quality of Service) 보장하는 IP 이동성 관리 방법을 제시한다. 제안된 방법은 크게 두 부분으로 나눌 수 있다. 하나는 차량에 탑재된 이동 게이트웨이의 측정 데이터 전송 속도가 사용자가 정의해 놓은 요구 데이터 전송 속도 (Data Transfer Rate) 이하로 떨어지게 되면 이용 가능한 무선 채널을 이용하여 새로운 무선 연결을 생성하는 것이고, 다른 하나는 이동 게이트웨이가 움직이는 동안에 요구 데이터 전송 속도를 보장하기 위해 다중 무선 네트워크 인터페이스를 사용하여 이동 게이트웨이와 무선 접속 라우터 간에 동적으로 병렬 분산 패킷 터널을 생성하는 것이다. 이와 같은 방법을 통해, 핸드오버 동작 중에 유발될 수 있는 지연시간 및 패킷 손실을 줄이는 동시에 사용자의 요구 데이터 전송 속도를 유지함으로써 QoS를 보장 할 수 있게 된다. 제안된 구조를 실현하기 위해 IETF 표준인 Hierarchical Mobile IPv6 (HMIPv6)의 구조를 확장하였고, HMIPv6의 확장을 위한 상세한 알고리즘을 설계하였다. 마지막으로, 성능분석을 위해 시뮬레이션을 수행하였고, 제안된 메커니즘은 핸드오버 하는 동안에 핸드오버 지연시간, 패킷 손실, 패킷 처리율에 대해 QoS를 보장함을 증명하였다.

In this article, we present a QoS-guaranteed IP mobility management scheme of Internet service for fast moving vehicles with multiple wireless network interfaces. The idea of the proposed mechanism consists of two things. One is that new wireless connections are established to available wireless channels whenever the measured data rate at the vehicle equipped with mobile gateway drops below to the required data rate of the user requirement. The other is that parallel distribution packet tunnels between an access router and the mobile gateway are dynamically constructed using multiple wireless network interfaces in order to guarantee the required data rate during the mobile gateway's movement. By doing these methods, the required data rate of the mobile gateway can be preserved while eliminating the possible delay and packet loss during handover operation, thus resulting in the guaranteed QoS. The architecture of the IETF standard HMIPv6 has been extended to realize the proposed scheme, and detailed algorithms for the extension of HMIPv6 has been designed. Finally, simulation has been done for performance evaluation, and the simulation results show that the proposed mechanism demonstrates guaranteed QoS during the handover with regard to the handover delay, packet loss and throughput.

키워드

참고문헌

  1. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE), Multiplechannel operation and Networking Service, 2007.
  2. K. Zhu, D. Niyato, P. Wang, E. Hossain, and D. I. Kim, "Mobility and Handoff Management in Vehicular Networks: a Survey," Wirel. Comm. and Mob. Comput. (Wiley), Oct. 5th. 2009.
  3. H. Soliman, C. Castelluccia, K. El Malki, and L. Bellier, Hierarchical Mobile IPv6 Mobility management, IETF RFC 5830, Oct. 2008.
  4. M. Tsukada, O. Mehani, and T. Ernst, "Simultaneous usage of MENO and MANET for Vehicular Communication," in Proc. TridentCom., Innsbruck, Austria, 2008, pp. 1-8.
  5. J. Y. Lee, B. C. Kim, H. S. Park, and K. C. Shin, Internet Draft-Fast Handovers for Multiple Interfaces Mobile IPv6 (MFMIPv6), IETF MONAMI6 WG, IETF Internet Draft, Jul. 2007.
  6. X. Cai, and C. Chi, "An Analytical Model for Performance Evaluation of Handover Decision Algorithm," In Proc. Second International Conference Communications and Networking in China, Aug. 2007, pp. 1079-1083.
  7. IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 1: Radio Resource Measurement of Wireless LANs, IEEE Draft Standard 802.11k, Jan. 2008.
  8. J. T. Park and S. M. Chun, "Fast Mobility Management for Delay-Sensitive Applications in Vehicular Networks," IEEE Comm. Letter, Jan. 2011, Vol. 15, No. 1, pp. 31-33. https://doi.org/10.1109/LCOMM.2010.01.100931
  9. C. Makaya, and S. Pierre, "An analytical Framework for Performance Evaluation of IPv6-based Mobility Management Protocols," IEEE Trans. Wireless Comm., Mar. 2008, Vol. 7, No. 17, pp. 972-983.
  10. C. Na, J. K. Chen, T. S. Rappaport, "Measured Traffic Statistics and Throughput of IEEE 802.11b Public WLAN Hotsopts with Three Different Applications," IEEE Trans. On Wirel. Comm., Nov. 2006, Vol. 5, No. 11, pp. 3296-3305. https://doi.org/10.1109/TWC.2006.05043