Mobile Application을 위한 All Digital Phase-Locked Loop 연구 동향

  • 발행 : 2011.10.31

초록

CMOS 집적회로기술의 발달로 인해 디지털회로는 속도향상 소모전력 감소로 성능이 매우 많이 향상되었지만, Analog/RF 회로는 동작전압감소, 공정변화심화 등으로 인해 심각한 성능저하가 나타나고 있다. 이에 기존의 전하펌프 기반 아날로그 PLL에 대한 대안으로 All Digital PLL(ADPLL)이 개발되고 이미 상용제품에 적용되고 있다. 하지만 그 성능은 데이터변환 회로인 TDC와 DCO의 제한된 해상도로 인해 개선이 많이 필요하다. 이 두 회로는 ADPLL의 성능에 가장 큰 영향을 미치므로 본 논문에서는 지금까지 발표된 TDC와 DCO 구현사례를 중심으로 ADPLL의 연구개발동향을 살펴보고자 한다.

키워드

참고문헌

  1. E. Gotz, et al.,H. Krobel, G. Mazinger, B. Memmler, C. Miinker, B. Neurauter, D. Romer, J. Ru-bach, W. Schehmbauer, M. Scholz, M. Simon, U. Steinacker, and C. Stoger, "A quad-hand low power single chip direct conversion CMOS transceiver with $\Sigma\Delta$-modulation loop for GSM," Proc. European Solid-State Dev. Research Conf.,Sep. 2003,pp. 217-220.
  2. A Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, "An all-digital RF signal generator using high-speed DS modulators," IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722-2732, Oct. 2009. https://doi.org/10.1109/JSSC.2009.2028406
  3. R. B. Staszewski, D. Leipold, K. Muhammad, and P. T. Balsara, ''Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS process," IEEE Trans. Cir. and Sys. -II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 815-828, Nov. 2003.
  4. R. B. Staszewski,J. L. Wallberg, S. Rezeq, C.-M. Hung, O. E. Eliezer, S. K. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, "All-Digital PLL and Transmitter for Mobile Phones," IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2469-2482, Dec. 2005. https://doi.org/10.1109/JSSC.2005.857417
  5. R. B. Staszewski, C. -M. Hung, N. Barton, M.-C. Lee, and D. Leipold, "A digitally controlled oscillator in a 90nm digital CMOS process for Mobile Phones," IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2203-2211, Nov. 2005.
  6. E. Temporiti, C. Weltin-Wu, D. Baldi, R. Tonietto, and F. Svelto, "A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques," IEEE J. Solid-State Circuits, vol. 444, no. 3, pp. 824-834, Mar. 2009.
  7. L. Vercesi, A. Liscidini, and R. Castello, ''Two-dimensions vernier time-to-digital converter," IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1504-1512, Aug. 2010. https://doi.org/10.1109/JSSC.2010.2047435
  8. M. Lee and A. A. Abidi, "A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue," IEEE J. Solid-States Circuits, vol. 43,no. 4,pp. 769-777, Apr. 2008.
  9. J. Borremans, K. Vengattaramane, V. Giannini, B. Debaillie, W. V. Thillo, and J. Craninckx, ''A 86 MHz-12 GHz digital-intensive PLL for software-defined radios, using a 6 fj/Step TDC in 40 nm Digital CMOS," IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2116-2129, Oct. 2010. https://doi.org/10.1109/JSSC.2010.2063630
  10. C.-M Hsu, M. Z. Straayer, and M. H. Perrott, "A low-noise wide-BW 3.6-GHz digital DS fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation," IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2776-2786, Dec. 2008. https://doi.org/10.1109/JSSC.2008.2005704
  11. D. Tasca, M. Zanuso, G. Marzin, S. Levantino, C. Samori, and A. L. Lacaita, "A 2.9-to-4.0 GHz fractional-N digital PLL with bang-bang phase detector and 560 fsrms integrated jitter at 4.5 mW power," in IEEE Int. Solid-State Cir. Conf. Dig. Tech. Papers, Feb. 2011, pp. 88-89.
  12. N. Pavlovic and J. Bergervoet, "A 5.3 GHz digital-to-time-converter-based fractional-N all digital PLL," in IEEE Int. Solid-State Cir. Conf. Dig. Tech. Papers, Feb. 2011, pp. 54-55.
  13. A.M. Abas, A Bystrov, D.J. Kinniment,O.V. Maevsky, G. Russell, and A.V. Yakovlev, "Time difference amplifier," Electron. Lett., vol. 38, no. 23, pp. 1437-1438, Nov. 2002. https://doi.org/10.1049/el:20020961
  14. S.-J. Lee, B. Kim, and K. Lee, "A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme," IEEE J. Solid-States Circuits, vol. 32, no. 2, pp. 289-291, Feb. 1997. https://doi.org/10.1109/4.551926
  15. N. D. Dalt, "A design0oriented study of the nonlinear dynamics of digital bang-bang Pils," IEEE Trans. Cir. and Sys.-I: Regular Papers, vol. 52, no. 1, pp. 21-31, Jan. 2005.