DOI QR코드

DOI QR Code

A review of elemental mercury removal processing

  • Bae, Kyong-Min (Department of Chemistry, Inha University) ;
  • Kim, Byung-Joo (Smart Composite Material Research Team, Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2011.06.12
  • Accepted : 2011.09.06
  • Published : 2011.09.30

Abstract

Public concern has recently increased over the potential risk of toxic elements emitted from anthropogenic sources. Among these, mercury has drawn special attention owing to its increasing level of bioaccumulation in the environment and in the food chain, with potential risks for human health. This paper presents an overview of research related to mercury control technology and identifies areas requiring additional research and development. It critically reviews measured mercury emissions progress in the development of promising control technologies, including catalytic oxidation, sorbent injection, photochemistry oxidation, and air pollution control devices.

Keywords

References

  1. Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc, 130, 8038 (2008). http://dx.doi.org/10.1021/ja801412b.
  2. Pavlish JH, Hamre LL, Zhuang Y. Mercury control technologies for coal combustion and gasification systems. Fuel, 89, 838 (2010). http://dx.doi.org/10.1016/j.fuel.2009.05.021.
  3. Ji H, Kim J, Yoo JW, Lee HS, Park KM, Kang Y. A highly Hg(II)-selective chemosensor with unique diarylethene fluorophore. Bull Korean Chem Soc, 31, 1371 (2010). http://dx.doi.org/10.5012/bkcs.2010.31.5.1371.
  4. ShamsiJazeyi H, Kaghazchi T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. J Ind Eng Chem, 16, 852 (2010). http://dx.doi.org/10.1016/j.jiec.2010.03.012.
  5. Galbreath KC, Zygarlicke CJ. Mercury transformations in coal combustion flue gas. Fuel Process Technol, 65-66, 289 (2000). http://dx.doi.org/10.1016/s0378-3820(99)00102-2.
  6. Jeon SH, Eom Y, Lee TG. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers. Chemosphere, 71, 969 (2008). http://dx.doi.org/10.1016/j.chemosphere.2007.11.050.
  7. Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T. Silica coated magnetite particles for magnetic removal of $Hg_2+$ from water. J Colloid Interface Sci, 345, 234 (2010). http://dx.doi.org/10.1016/j.jcis.2010.01.087.
  8. Skodras G, Diamantopoulou I, Pantoleontos G, Sakellaropoulos GP. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. J Hazard Mater, 158, 1 (2008). http://dx.doi.org/10.1016/j.jhazmat.2008.01.073.
  9. Okwadha GD. Thermal removal of mercury in spent powdered activated carbon from TOXECON process. J Environ Eng, 135, 1032 (2009). http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000074.
  10. Tripathi VS, Ramachandran PK. Studies on metal impregnated activated carbon: complete pore structure analysis. Carbon, 20, 25 (1982). http://dx.doi.org/10.1016/0008-6223(82)90069-0.
  11. Lee SS, Lee JY, Keener TC. The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases. Fuel, 88, 2053 (2009). http://dx.doi.org/10.1016/j.fuel.2009.01.027.
  12. Schofield K. Fuel-mercury combustion emissions: an important heterogeneous mechanism and an overall review of its implications. Environ Sci Technol, 42, 9014 (2008). http://dx.doi.org/10.1021/es801440g.
  13. Lee SS, Lee JY, Khang SJ, Keener TC. Modeling of mercury oxidation and adsorption by cupric chloride-impregnated carbon sorbents. Ind Eng Chem Res, 48, 9049 (2009). http://dx.doi.org/10.1021/ie900619v.
  14. Kang SC, Im JS, Lee YS. Improved sensitivity of an NO gas sensor by chemical activation of eectrospun carbon fibers. Carbon Lett, 12, 21 (2011). https://doi.org/10.5714/CL.2011.12.1.021
  15. Brown TD, Smith DN, Hargis RA Jr., O'Dowd WJ. Mercury measurement and its control: what we know, have learned, and need to further investigate. J Air Waste Manage Assoc, 49, 628 (1999). https://doi.org/10.1080/10473289.1999.10463844
  16. Wang SX, Zhang L, Li GH, Wu Y, Hao JM, Pirrone N, Sprovieri F, Ancora MP. Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys, 10, 1183 (2010). http://dx.doi.org/10.5194/acp-10-1183-2010.
  17. Lee W, Bae GN. Removal of elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts. Environ Sci Technol, 43, 1522 (2009). http://dx.doi.org/10.1021/es802456y.
  18. Li S, Cheng CM, Chen B, Cao Y, Vervynckt J, Adebambo A, Pan WP. Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler. Energy Fuels, 21, 3292 (2007). http://dx.doi.org/10.1021/ef0701384.
  19. Cao Y, Gao Z, Zhu J, Wang Q, Huang Y, Chiu C, Parker B, Chu P, Pan Wp. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Environ Sci Technol, 42, 256 (2007). http://dx.doi.org/10.1021/es071281e.
  20. Laumb JD, Benson SA, Olson EA. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry. Fuel Process Technol, 85, 577 (2004). http://dx.doi.org/10.1016/j.fuproc.2003.11.008.
  21. Streets DG, Hao J, Wu Y, Jiang J, Chan M, Tian H, Feng X. Anthropogenic mercury emissions in China. Atmos Environ, 39, 7789 (2005). http://dx.doi.org/10.1016/j.atmosenv.2005.08.029.
  22. Wang H, Zhou S, Xiao L, Wang Y, Liu Y, Wu Z. Titania nanotubes— a unique photocatalyst and adsorbent for elemental mercury removal. Catalysis Today in press. http://dx.doi.org/10.1016/j.cattod.2011.03.006.
  23. Lee SS, Lee JY, Keener TC. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Process Technol, 90, 1314 (2009). http://dx.doi.org/10.1016/j.fuproc.2009.06.020.
  24. Zeng H, Jin F, Guo J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel, 83, 143 (2004). http://dx.doi.org/10.1016/s0016-2361(03)00235-7.
  25. Hu C, Zhou J, Luo Z, Cen K. Oxidative adsorption of elemental mercury by activated carbon in simulated coal-fired flue gas. Energy Fuels, 25, 154 (2010). http://dx.doi.org/10.1021/ef101100y.
  26. Qiao S, Chen J, Li J, Qu Z, Liu P, Yan N, Jia J. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina. Ind Eng Chem Res, 48, 3317 (2009). http://dx.doi.org/10.1021/ie801478w.
  27. Granite EJ, Pennline HW, Hargis RA. Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res, 39, 1020 (2000). http://dx.doi.org/10.1021/ie990758v.
  28. Vidic RD, Siler DP. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon, 39, 3 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00081-6.
  29. Li Y, Murphy P, Wu CY. Removal of elemental mercury from simulated coal-combustion flue gas using a $SiO_2-TiO_2$ nanocomposite. Fuel Process Technol, 89, 567 (2008). http://dx.doi.org/10.1016/j.fuproc.2007.10.009.
  30. Granite EJ, Pennline HW. Photochemical removal of mercury from flue gas. Ind Eng Chem Res, 41, 5470 (2002). http://dx.doi.org/10.1021/ie020251b.
  31. Dickinson RG, Sherrill MS. Formation of ozone by optically excited mercury vapor. Proc Natl Acad Sci U S A, 12, 175 (1926). https://doi.org/10.1073/pnas.12.3.175
  32. Padmini E, Prakash SK, Miranda LR. Photocatalytic degradation of quinol and blue FFS acid using TiO2 and doped TiO2. Carbon Lett, 11, 332 (2010). https://doi.org/10.5714/CL.2010.11.4.332
  33. Kondratev VN. Chemical Kinetics of Gas Reactions, Pergamon Press, New York (1964).
  34. Volman DH. Photochemical Gas Phase Reactions in the Hydrogen-Oxygen System. Advances in Photochemistry Vol. 43, Wiley-Interscience, New York (1963).
  35. Maron SH, Lando JB, Prutton CF. Fundamentals of Physical Chemistry, Macmillan, New York (1974).
  36. Bamford CH, Tipper CFH, Compton RG. The Formation and Decay of Excited Species. Comprehensive Chemical Kinetics Vol. 3, Elsevier, New York (1969).
  37. Stankov N. Application of mercury isotopes and their production. J Radioanal Nucl Chem, 205, 175 (1996). http://dx.doi.org/10.1007/bf02039401.
  38. Grossman MV. US Patent 5,061,353 (1991).
  39. Woo KJ, Kang SH, Kim SM, Bae JW, Jun KW. Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis: determination of optimum condition. Fuel Process Technol, 91, 434 (2010). http://dx.doi.org/10.1016/j.fuproc.2009.04.021.
  40. Pitoniak E, Wu CY, Mazyck DW, Powers KW, Sigmund W. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. Environ Sci Technol, 39, 1269 (2005). http://dx.doi.org/10.1021/es049202b.
  41. Jeon SH, Eom Y, Lee TG. Photocatalytic Oxidation of Gas-Phase Elemental Mercury by Nanotitanosilicate Fibers. Chemosphere, 71, 969 (2008). http://dx.doi.org/10.1016/j.chemosphere.2007.11.050.
  42. Lee TG, Hyun JE. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury. Chemosphere, 62, 26 (2006). http://dx.doi.org/10.1016/j.chemosphere.2005.04.048.
  43. Jung MJ, Jeong E, Jang JS, Lee YS. Preparation and characterization of electrospun TIO2-activated carbon complex fiber as photocatalyst. Carbon Lett, 11, 28 (2010). https://doi.org/10.5714/CL.2010.11.1.028
  44. Srivastava RK, Hutson N, Martin B, Princiotta F, Staudt J. Control of mercury emissions from coal-fired electric utility boilers. Environ Sci Technol, 40, 1385 (2006). http://dx.doi.org/10.1021/es062639u.
  45. Carey TR, Richardson CF, Chang R, Meserole FB, Rostam-Abadi M, Chen S. Assessing sorbent injection mercury control effectiveness in flue gas streams. Environ Prog, 19, 167 (2000). http://dx.doi.org/10.1002/ep.670190309.
  46. Morency J. Zeolite sorbent that effectively removes mercury from flue gases. Filtr Sep, 39, 24 (2002). http://dx.doi.org/10.1016/s0015-1882(02)80207-5.
  47. Kim BJ, Bae KM, An KH, Park SJ. Elemental mercury adsorption behaviors of chemically modified activated carbons. Bull Korean Chem Soc, 32, 1321 (2011). http://dx.doi.org/10.5012/bkcs. 2011.32.4.1321.
  48. Park SJ, Seo MK. Interface Science and Composites, Elsevier, New York (2011).
  49. Kim BJ, Bae KM, Park SJ. A study of the optimum pore structure for mercury vapor adsorption. Bull Korean Chem Soc, 32, 1507 (2011). http://dx.doi.org/10.5012/bkcs.2011.32.5.1507.
  50. Kim BJ, Bae KM, Park SJ. Roles of metal/activated carbon hybridization on elemental mercury adsorption behaviors. J Nanosci Nanotechnol in press.
  51. Kim BJ, Bae KM, Park SJ. Elemental mercury vapor adsorption of copper-coated porous carbonaceous materials. J Colloid Interface Sci in press.
  52. Jones AP, Hoffmann JW, Smith DN, Feeley TJ, Murphy JT. DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection. Environ Sci Technol, 41, 1365 (2007). http://dx.doi.org/10.1021/es0617340.
  53. Quick JC. Carbon dioxide emission factors for U.S. coal by origin and destination. Environ Sci Technol, 44, 2709 (2010). http://dx.doi.org/10.1021/es9027259.
  54. Olson ES, Crocker CR, Benson SA, Pavlish JH, Holmes MJ. Surface compositions of carbon sorbents exposed to simulated lowrank coal flue gases. J Air Waste Manage Assoc, 55, 747 (2005). https://doi.org/10.1080/10473289.2005.10464672
  55. Hassett DJ, Eylands KE. Mercury capture on coal combustion fly ash. Fuel, 78, 243 (1999). http://dx.doi.org/10.1016/s0016-2361(98)00150-1.
  56. Serre SD, Silcox GD. Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind Eng Chem Res, 39, 1723 (2000). http://dx.doi.org/10.1021/ie990680i.
  57. Guo P, Guo X, Zheng CG. Computational insights into interactions between Hg species and ${\alpha}-Fe_2O_3$ (0 0 1). Fuel, 90, 1840 (2011). http://dx.doi.org/10.1016/j.fuel.2010.11.007.
  58. Senior CL, Johnson SA. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants. Energy Fuels, 19, 859 (2005). http://dx.doi.org/10.1021/ef049861+.
  59. Dunham GE, DeWall RA, Senior CL. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Process Technol, 82, 197 (2003). http://dx.doi.org/10.1016/s0378-3820(03)00070-5.
  60. Abad-Valle P, Lopez-Anton MA, Diaz-Somoano M, Juan R, Rubio B, Garcia JR, Khainakov SA, Martínez-Tarazona MR. Influence of iron species present in fly ashes on mercury retention and oxidation. Fuel, 90, 2808 (2011). http://dx.doi.org/10.1016/j.fuel.2011.04.031.
  61. Gao Y, Kulaots I, Chen X, Suuberg EM, Hurt RH, Veranth JM. The effect of solid fuel type and combustion conditions on residual carbon properties and fly ash quality. Proc Combust Inst, 29, 475 (2002). https://doi.org/10.1016/S1540-7489(02)80062-1
  62. Pedersen KH, Casanovas Melia M, Jensen AD, Dam-Johansen K. Post-treatment of fly ash by ozone in a fixed bed reactor. Energy Fuels, 23, 280 (2008). http://dx.doi.org/10.1021/ef800532x.
  63. Kolker A, Senior CL, Quick JC. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl Geochem, 21, 1821 (2006). http://dx.doi.org/10.1016/j.apgeochem.2006.08.001.

Cited by

  1. Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium salt-supported silica as a filler vol.39, pp.7, 2013, https://doi.org/10.1007/s11164-012-0839-8
  2. Facile fabrication of Poly(vinyl alcohol)/Silica composites for removal of Hg(II) from water vol.23, pp.1, 2015, https://doi.org/10.1007/s13233-015-3010-8
  3. Stability and Performance of Physically Immobilized Ionic Liquids for Mercury Adsorption from a Gas Stream vol.54, pp.48, 2015, https://doi.org/10.1021/acs.iecr.5b01738
  4. Solid support ionic liquid (SSIL) adsorbents for mercury removal from natural gas pp.1735-2630, 2018, https://doi.org/10.1007/s13762-018-1781-0