DOI QR코드

DOI QR Code

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones

  • Lim, Byung-Hwa (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jeong, Il-Gyo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Anandakumar, S. (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, K.W. (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Cheol-Gi (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2011.10.17
  • Accepted : 2011.11.14
  • Published : 2011.12.31

Abstract

We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.

Keywords

References

  1. I. Safarik, M. Safarikova, and J. Chormatogr. B: Biomed. Appl. 722, 33 (1999). https://doi.org/10.1016/S0378-4347(98)00338-7
  2. M. A. M. Gijs, Microfluid Nanofluid 1, 22 (2004).
  3. R. N. Zare and S. Kim, Annu. Rev. Biomed. Eng. 12, 187 (2010). https://doi.org/10.1146/annurev-bioeng-070909-105238
  4. T. Deng, G. M. Whiteside, M. Radhakrishnan, G. Zabow, and M. Prentiss, Appl. Phys. Lett. 78, 1775 (2001). https://doi.org/10.1063/1.1356728
  5. A. Rida, V. Fernanadez, and M. A. M. Gijs, Appl. Phys. Lett. 83, 2396 (2003). https://doi.org/10.1063/1.1613038
  6. Q. Ramadan, C. Yu, V. Samper, and D. P. Poenar, Appl. Phys. Lett. 88, 032501 (2006). https://doi.org/10.1063/1.2149150
  7. E. Mirowski, J. Moreland, A. Zhang, S. E. Russek, and M. J. Donahue, Appl. Phys. Lett. 86, 243901 (2005). https://doi.org/10.1063/1.1947368
  8. T. Deng, M. Prentiss, and G. M. Whitesides, Appl. Phys. Lett. 80, 461 (2002). https://doi.org/10.1063/1.1436282
  9. E. Mirowski, J. Moreland, S. Russek, M. Donahue, and K. Hsieh, J. Magn. Magn. Mater. 311, 401 (2007). https://doi.org/10.1016/j.jmmm.2006.11.202
  10. K. Smistrup, T. Lund-Olesen, M. F. Hansen, and P. T. Tang, J. Appl. Phys. 99, 08P102 (2006). https://doi.org/10.1063/1.2159418
  11. K. Gunnarsson, P. E. Roy, S. Felton, J. Pihl, P. Svedlindh, S. Berner, H. Lidbaum, and S. Oscarsson, Adv. Mater. 17, 1730 (2005). https://doi.org/10.1002/adma.200401880
  12. S. Anandakumar, V. Sudha Rani, Sunjong Oh, B. L. Sinha, M. Takahashi, and C. G. Kim, Biosens. Bioelectron. 26, 1755 (2010). https://doi.org/10.1016/j.bios.2010.08.033
  13. R. Wirix-Speetjens and J. de Boek, IEEE Trans. Magn. 41, 1944 (2004).
  14. M. Zborowski, C. B. Fuh, R. Green, L. Sun, and J. J. Chalmers, Anal. Chem. 67, 3702 (1995). https://doi.org/10.1021/ac00116a014
  15. Q. Ramadan, V. Samper, D. P. Poenar, and C. Yu, Biosens. Bioelectron. 21, 1693 (2006). https://doi.org/10.1016/j.bios.2005.08.006
  16. N. Pamme, Lab Chip. 6, 24 (2006). https://doi.org/10.1039/b513005k
  17. S. Anandakumar, V. Sudha Rani, J.-R. Jeong, C. G. Kim, K. W. Kim, and B. Parvatheeswara Rao, J. Appl. Phys. 105, 07B312 (2009). https://doi.org/10.1063/1.3073965
  18. http://www.dynalbiotech.com

Cited by

  1. Micromagnet arrays enable precise manipulation of individual biological analyte–superparamagnetic bead complexes for separation and sensing vol.16, pp.19, 2016, https://doi.org/10.1039/C6LC00707D