• Title/Summary/Keyword: NiFe ellipse

Search Result 2, Processing Time 0.016 seconds

Magnetic Properties of RF Diode Sputtered $Ni_{80}Fe_{20}/SiO_2$ Multilayers (모양으로 유도된 자기 이방성을 가진 $Ni_{80}Fe_{20}/SiO_2$ 다층막의 자기적 성질)

  • Yun, Eui-Jung;Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.1-6
    • /
    • 2007
  • This study investigated the magnetic properties of $Ni_{80}Fe_{20}/SiO_2$ laminates with shape-induced magnetic anisotropy. The multilayer films were deposited on Si or upilex substrates, from separate $Ni_{80}Fe_{20}$ and $SiO_2$ (at %) alloy targets using a rf diode sputtering system. $Ni_{80}Fe_{20}/SiO_2$ laminates with a various number of bilayers (N) were prepared. The laminates with ellipse array patterns were prepared using photolithographic technique. The magnetic properties were measured at room temperature using a B-H hysteresisgraph and a high frequency permeameter. The several steps during domain wall reversal were observed in multilayer films, attributing to inter-magnetic layer coupling. Intrinsic uniaxial anisotropy field increases with N. The experimental values of the total anisotropy field are found to be in good agreement with the calculated values. This study utilized the shape anisotropy of the laminated film objects with small ellipse array patterns to induce a larger uniaxial anisotropy so as to maximize their operating frequency.

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones

  • Lim, Byung-Hwa;Jeong, Il-Gyo;Anandakumar, S.;Kim, K.W.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.363-367
    • /
    • 2011
  • We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.