DOI QR코드

DOI QR Code

정전 분무 공정을 이용한 Fecralloy 나노 입자가 코팅된 Fecralloy Foil의 제조

Fabrication of Fecralloy Foil Coated by Fecralloy Nanoparticles Using Electrospray Processing

  • 윤중열 (한국기계연구원 부설 재료연구소) ;
  • 양상선 (한국기계연구원 부설 재료연구소) ;
  • 구혜영 (한국기계연구원 부설 재료연구소) ;
  • 이혜문 (한국기계연구원 부설 재료연구소)
  • 투고 : 2011.09.16
  • 심사 : 2011.10.27
  • 발행 : 2011.12.28

초록

Fecralloy is the promising materials for high temperature exhaust filtering system due to the excellent its oxidation resistance property. In this research, Fecralloy nanoparticles coated Fecralloy thin foil was prepared by a single nozzle electrospray system in order to increase surface area of Fecralloy foil. Fecralloy nanoparticles were fabricated by electrical wire explosion method in ethanol using Fecralloy wires as a source material. Electrospray modes with applied D.C voltages to Fecralloy colloidal solution were investigated to make a stable cone-jet mode. Coated layers with and without additional heat treatment were observed by FE-SEM (field emission-scanning electron microscope) and tape test for evaluating their adhesion to substrate were performed as well.

키워드

참고문헌

  1. K. Ohno, K. Shimato, N. Taoka, H. Santae, T. Ninomiya and T. Komori: SAE world congress, Detroit, MI (2000).
  2. S. Ichikawa, T. Harada and T. Hamanaka: Ceramics, 38 (2003) 296.
  3. N. Miyakawa, H. Maeno and H. Takahashi: SAE world congress, Detroit, MI (2003).
  4. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  5. http://www.alantum.com/kr/manufacturing.html
  6. R. R. Unocic, G. B. Viswanathan, P. M. Sarosi, S. Karthikeyan, J. Li and M. J. Mills: Mater. Sci. Eng. A, 483 (2008) 25. https://doi.org/10.1016/j.msea.2006.08.148
  7. C. J. Bennett, T. E. Hayes, S. T. Kolaczkowski and W. J. Thomas: Proc. R. Soc. Lond., A 439 (1992) 465.
  8. M. V. Twing, D. E. Webster, A. Cybulski and J. A. Moulijn: Structured Catalysts and Reactors, Marcel Dekker Inc., New York, (1998) 59.
  9. P. Avila, M. Montes and E. Miro: Chem. Eng. J., 109 (2005) 1. https://doi.org/10.1016/j.cej.2005.02.024
  10. R. Houriet, R. Vacassy, H. Hofmann and W. Vogel: Mater. Res. Soc. Symp. Proc., 526 (1998) 117.
  11. R. Houriet, R. Vacassy and H. Hofmann: Nano. Str. Mater., 11 (1999) 1155. https://doi.org/10.1016/S0965-9773(99)00406-7
  12. D. G. Lee, S. J. Park, Y. O. Park and J. I. Ryu: Korean Chem. Eng. Res., 45 (2007) 591.
  13. Y.S. Cho, S. J. Son, Y. K. Kim, K. C. Chung and C. J. Choi: Korean Powder Metall. Inst., 17 (2010) 390 (Korean). https://doi.org/10.4150/KPMI.2010.17.5.390
  14. S. N. Jayasinghe, and M. J. Edirisinghe: Appl. Phys. A, 80 (2005) 399. https://doi.org/10.1007/s00339-003-2324-0
  15. A. Jaworek: Powd. Technol., 176 (2007) 18. https://doi.org/10.1016/j.powtec.2007.01.035
  16. A. Jaworek and A. T. Sobczyk: J. Electrostat., 66 (2008) 197. https://doi.org/10.1016/j.elstat.2007.10.001
  17. J. Y. Yun, H. M. Lee, S. Y. Choi, S. Yang, D. W. Lee, Y. J. Kim and B. K. Kim: Mater. Trans., 52 (2011) 250. https://doi.org/10.2320/matertrans.M2010318

피인용 문헌

  1. Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process vol.19, pp.6, 2012, https://doi.org/10.4150/KPMI.2012.19.6.435
  2. Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process vol.21, pp.1, 2014, https://doi.org/10.4150/KPMI.2014.21.1.55
  3. Electrospray and Thermal Treatment Process for Enhancing Surface Roughness of Fecralloy Coating Layer on a Large Sized Substrate vol.24, pp.1, 2017, https://doi.org/10.4150/KPMI.2017.24.1.46