참고문헌
- Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution: Theory, Methodology, and Applications, Marcel Dekker, New York.
- Cressie, N. (1976). On the logarithms of high-order spacings, Biometrika, 63, 343-355. https://doi.org/10.1093/biomet/63.2.343
- D'Agostino, R. B. and Stephens, M. A. (1986). Goodness-of-fit Techniques, Marcel Dekker, New York.
- Dudewicz, E. J. and van der Meulen, E. C. (1981). Entropy-based test for uniformity, Journal of the American Statistical Association, 76, 967-974. https://doi.org/10.2307/2287597
- Edgeman, R. L. (1990). Assessing the inverse Gaussian distribution assumption, IEEE Transactions on Reliability, 39, 352-355. https://doi.org/10.1109/24.103017
- Edgeman, R. L., Scott, R. C. and Pavur, R. J. (1988). A modified Kolmogorov-Smirnov test for the inverse density with unknown parameters, Communications in Statistics-Simulation and Computation, 17, 1203-1212. https://doi.org/10.1080/03610918808812721
- Ebrahimi, N., Habibullah, M. and Soofi, E. S. (1992). Testing for exponentiality based on Kullback-Leibler information, Journal of the Royal Statistical Society, Series B, 54, 739-748.
- Hadwinger, H. (1940). Naturliche ausscheidefunktionen fur gesamtheiten und die losung der erneurungsgleichung, Mitteilunggen der Vereinigung Schweizerischer Versicherungsmathematiker, 40, 31-49.
- Hall, P. (1984). Limit theorems for sums of general functions of m-spacings, Mathematical Statistics and Data Analysis, 1, 517-532.
- Hall, P. (1986). On powerful distributional tests on sample spacings, Journal of Multivariate Analysis, 19, 201-255. https://doi.org/10.1016/0047-259X(86)90027-8
- Kullback, S. and Leibler, R. A. (1951). On information and sufficiency, Annals of Mathematical Statistics, 22, 79-86. https://doi.org/10.1214/aoms/1177729694
- Michael, J. R., Schucany, W. R. and Hass, R. W. (1976). Generating random variables using transformation with multiple roots, The American Statistician, 30, 88-90. https://doi.org/10.2307/2683801
- Mudholkar, G. S. and Tian, L. (2002). An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test, Journal of Statistical Planning and Inference, 102, 211-221. https://doi.org/10.1016/S0378-3758(01)00099-4
- Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate, Technometrics, 5, 375-384. https://doi.org/10.2307/1266340
- Schrodinger, E. (1915). Zur theorie der fall und steigversuche an teilchen mit Brownscher bewegung, Physikalische Zeitschrift, 16, 289-295.
- Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and Applications. Springer, New York.
- Shannon, C. E. (1948). A mathematical theory of communications, Bell System Technical Journal, 27, 379-423, 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Smoluchowsky, M. V. (1915). Notiz uber die berechning der Brownschen molkularbewegung bei des ehrenhaft-milikanchen versuchsanordnung, Physikalische Zeitschrift, 16, 318-321.
- Tweedie, M. K. (1945). Inverse statistical variates, Nature, 155, 453.
- Tweedie, M. K. (1946). The regression of the sample variance on the sample mean, Journal of London Mathematical Society, 21, 22-28. https://doi.org/10.1112/jlms/s1-21.1.22
- Tweedie, M. K. (1947). Functions of a statistical variate with given means, with special reference to Laplacian distributions, Proceedings of the Cambridge Philosophical Society, 43, 41-49. https://doi.org/10.1017/S0305004100023185
- Tweedie, M. K. (1956). Some statistical properties of inverse Gaussian distributions, Virginia Journal of Science, 7, 160-165.
- Tweedie, M. K. (1957a). Statistical properties of inverse Gaussian distributions-I, Annals of Mathematical Statistics, 28, 362-377. https://doi.org/10.1214/aoms/1177706964
- Tweedie, M. K. (1957b). Statistical properties of inverse Gaussian distributions-II, Annals of Mathematical Statistics, 28, 696-705. https://doi.org/10.1214/aoms/1177706881
- van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on spacings, Scandinavian Journal of Statistics, 19, 61-72.
- Vasicek, O. (1976). A test for normality based on sample entropy, Journal of the Royal Statistical Society, B38, 54-59.
- Wald, A. (1945). Sequential tests of statistical hypotheses, Annals of Mathematical Statistics, 16, 117-186. https://doi.org/10.1214/aoms/1177731118