참고문헌
- 김재희 (2011). R 다변량 통계 분석, 교우사, 서울
- 김재희, 고윤실 (2009). 군집분석 비교 및 한우 관능평가데이터 군집화, 응용통계 연구, 22, 745-758. https://doi.org/10.5351/KJAS.2009.22.4.745
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society: Series B, 57, 289-300.
- Bickel, D. R. (2011). Estimating the null distribution to adjust observed confidence levels for genome-scale screening, Bioinformatics, 67, 363-370.
- Datta, S. and Datta, S. (2005). Empirical Bayes screening of many p-values with application to microarray studies, Bioinformatics, 21, 1987-1994. https://doi.org/10.1093/bioinformatics/bti301
- Dudoit, S., Shaffer, J. P. and Boldrick, J. C. (2003). Multiple hypothesis testing in microarray experiments, Statistical Science, 18, 71-103. https://doi.org/10.1214/ss/1056397487
- Dunn (1974). Well-separated clusters and optimal fuzzy partitions, Journal of Cybernetics, 4, 95-104. https://doi.org/10.1080/01969727408546059
- Eckel, J. E., Gennings, C., Chinchilli, V. M., Burgoon, L. D. and Zacharewski, T. R. (2004). Empirical Bayes gene screening tool for time-course or dose-response microarray data, Journal of Biopharmaceutical Statistics, 14, 647-670. https://doi.org/10.1081/BIP-200025656
- Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation, Journal of the American Statistical Association, 97, 611-631. https://doi.org/10.1198/016214502760047131
- Fraley, C. and Raftery, A. E. (2006). MCLUST Version 3 for R: Normal mixture modeling and model-based clustering, Technical Report No. 504.
- Gentleman, R., Caray, V. J., Huber, W., Irizarry, R. A. and Dudoit, S. (2005). Bioinformatics and computational biology solutions using R and bioconductor, Spinger, New York.
- Getz, G., Levine, E., Domany, E. and Zhang, M. Q. (2000). Super-paramagneic clustering of yeast expression profiles. Physica, A279, 457-464.
- Handl, J., Knowles, J. and Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics, 21, 3201-3212. https://doi.org/10.1093/bioinformatics/bti517
- Huang, D. W., Sherman, B. T. and Lempicki, R. A.(2009). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources, Nature Protocols, 4, 44-57. https://doi.org/10.1038/nprot.2008.211
- Hero, A. O., Fleury, G., Mears, A. J. and Swaroop, A. (2004). Multicriteria gene screening for analysis of differential expression with DNA microarrays, Journal on Applied Signal processing, 2004, 43-52. https://doi.org/10.1155/S1110865704310036
- Izenman, A. J. (2008). Modern Multivariate Statistical Techniques, Spinger, New York.
- Kim, B. R., Littell, R. C. and Wu, R. (2006). Clustering periodic patterns of gene expression based on fourier appoximations, Current Genomics, 7, 197-203. https://doi.org/10.2174/138920206777780229
- Kim, J. and Hart, J. D. (1998). Test for change when the data are dependent, Journal of Time Series, 19, 399-424. https://doi.org/10.1111/1467-9892.00100
- Kim, J. and Kim, H. (2008). Clustering of change using Fourier coefficient, Bioinformatics, 24, 184-191. https://doi.org/10.1093/bioinformatics/btm568
- Kim, J., Ogden, R. T. and Kim, H. (2011). A method of identify differential expression profile with timecourse gene data and Fourier transformation, BMC Bioinformatics, in revision.
- Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York.
- Kohonen, T. (1998). The self-organizing map, Neurocomputing, 21, 1-6. https://doi.org/10.1016/S0925-2312(98)00030-7
- Ma, S. (2006). Empirical study of supervised gene screening, BMC Bioinformatics, 7, 537. https://doi.org/10.1186/1471-2105-7-537
- Rousseeuw, P. T. (1987). Silhouettes: Graphical aid to the interpretation and validation of cluster analysis, Journal of Computation Applied Math, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
- Serban, N. and Wasserman, L. (2005). CATS: Clustering after transformation and smoothing, Journal of the American Statistical Association, 471, 990-999.
- Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences of the United States of America, 98, 5116-5121. https://doi.org/10.1073/pnas.091062498
- Toronen, R., Kolehmainen, M., Wong, G. and Castren, E. (1999). Analysis of gene expression data using self-organizing maps, Federation of European Biochemical Societies, 451, 142-146. https://doi.org/10.1016/S0014-5793(99)00524-4
- Zhang, L., Zhang, A. and Ramanathan, M. (2003). Fourier harmonic approach for visualizing temporal patterns of gene expression data, IEEE Computer Society Bioinformatics Conference, 2, 137-147.
피인용 문헌
- Screening and Clustering for Time-course Yeast Microarray Gene Expression Data using Gaussian Process Regression vol.26, pp.3, 2013, https://doi.org/10.5351/KJAS.2013.26.3.389