References
- A. V. Alekseevsky and D. V. Alekseevsky, G-manifolds with one-dimensional orbit space, Lie groups, their discrete subgroups, and invariant theory, 1-31, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992.
- A. V. Alekseevsky and D. V. Alekseevsky, Riemannian G-manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993), no. 3, 197-211.
- G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972.
- J. Berndt, S. Console, and C. Olmos, Submanifolds and Holonomy, Chapman & Hall/CRC Research Notes in Mathematics, 434. Chapman & Hall/CRC, Boca Raton, FL, 2003.
- M. P. do Carmo, Riemannian Geometry, Birkhauser Boston, Inc., Boston, MA, 1992.
- A. J. Di Scala and C. Olmos, The geometry of homogeneous submanifolds of hyperbolic space, Math. Z. 237 (2001), no. 1, 199-209. https://doi.org/10.1007/PL00004860
- P. Eberlein, Geodesic follows in manifolds of nonpositive curvature, http://www.math.unc.edu/faculty/pbe/ams.
- S. Kobayashi, Homogeneous Riemannian manifolds of negative curvature, Tohoku Math. J. (2) 14 (1962), 413-415. https://doi.org/10.2748/tmj/1178244077
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Vol II, Interscience Publishers John Wiley & Sons, Inc., New York, 1963, 1969.
- P. W. Michor, Isomrtric actions of Lie groups and invariants, Lecture course at the university of Vienna, 1996/1997, http://www.mat.univie.ac.at/~michor/tgbook.ps.
- R. Mirzaie, Cohomogeneity two actions on flat Riemannian manifolds, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 9, 1587-1592. https://doi.org/10.1007/s10114-007-0952-6
- R. Mirzaie and S. M. B. Kashani, On cohomogeneity one flat Riemannian manifolds, Glasg. Math. J. 44 (2002), no. 2, 185-190.
- B. O'Neil, Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, 103. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.
- E. Podesta and A. Spiro, Some topological properties of cohomogeneity one manifolds with negative curvature, Ann. Global Anal. Geom. 14 (1996), no. 1, 69-79. https://doi.org/10.1007/BF00128196
- C. Searle, Cohomogeneity and positive curvature in low dimensions, Math. Z. 214 (1993), no. 3, 491-498. https://doi.org/10.1007/BF02572419
- J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
- J. A. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature, Illinois J. Math. 8 (1964), 14-18.
Cited by
- Topology of orbits and orbit spaces of some product G-manifolds vol.149, pp.3-4, 2016, https://doi.org/10.1007/s00229-015-0786-y
- Actions without nontrivial singular orbits on Riemannian manifolds of negative curvature vol.147, pp.1, 2015, https://doi.org/10.1007/s10474-015-0520-y