DOI QR코드

DOI QR Code

NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY

  • Received : 2008.04.26
  • Accepted : 2010.05.05
  • Published : 2011.01.01

Abstract

In this paper, a pair of Wolfe type nondifferentiable sec-ond order symmetric minimax mixed integer dual problems is formu-lated. Symmetric and self-duality theorems are established under $\eta_1$-bonvexity/$\eta_2$-boncavity assumptions. Several known results are obtained as special cases. Examples of such primal and dual problems are also given.

Keywords

References

  1. I. Ahmad and Z. Husain, On symmetric duality in nondifferentiable mathematical pro-gramming with F-convexity, J. Appl. Math. Comput. 19 (2005), no. 1-2, 371-384. https://doi.org/10.1007/BF02935812
  2. E. Balas, Minimax and duality for linear and nonlinear mixed-integer programming, Integer and nonlinear programming, pp. 385-418. North-Holland, Amsterdam, 1970.
  3. M. S. Bazaraa and J. J. Goode, On symmetric duality in nonlinear programming, Operations Res. 21 (1973), 1-9. https://doi.org/10.1287/opre.21.1.1
  4. S. Chandra and Abha, Non-differentiable symmetric duality in minimax integer programming, Opsearch 34 (1997), no. 4, 232-241. https://doi.org/10.1007/BF03398528
  5. G. B. Dantzig, E. Eisenberg, and R. W. Cottle, Symmetric dual nonlinear programs, Pacific J. Math. 15 (1965), 809-812. https://doi.org/10.2140/pjm.1965.15.809
  6. W. S. Dorn, A symmetric dual theorem for quadratic programming. Journal of Operational Research Society, Japan. 2 (1960), 93-97.
  7. T. R. Gulati and S. K. Gupta, Wolfe type second-order symmetric duality in nondiffer-entiable programming, J. Math. Anal. Appl. 310 (2005), no. 1, 247-253. https://doi.org/10.1016/j.jmaa.2005.02.004
  8. M. A. Hanson, Second order invexity and duality in mathematical programming, Opsearch 30 (1993), 313-320.
  9. S. H. Hou and X. M. Yang, On second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl. 255 (2001), no. 2, 491-498. https://doi.org/10.1006/jmaa.2000.7242
  10. O. L. Mangasarian, Second-and higher-order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975), no. 3, 607-620. https://doi.org/10.1016/0022-247X(75)90111-0
  11. S. K. Mishra, Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 127 (2000), no. 3, 507-518. https://doi.org/10.1016/S0377-2217(99)00334-3
  12. B. Mond, Second order duality for nonlinear programs, Opsearch 11 (1974), no. 2-3, 90-99.
  13. X. M. Yang, X. Q. Yang, and K. L. Teo, Non-differentiable second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 144 (2003), no. 3, 554-559. https://doi.org/10.1016/S0377-2217(02)00156-X

Cited by

  1. On second order duality of minimax fractional programming with square root term involving generalized B-(p, r)-invex functions vol.244, pp.2, 2016, https://doi.org/10.1007/s10479-016-2147-y