References
- I. Ahmad and Z. Husain, On symmetric duality in nondifferentiable mathematical pro-gramming with F-convexity, J. Appl. Math. Comput. 19 (2005), no. 1-2, 371-384. https://doi.org/10.1007/BF02935812
- E. Balas, Minimax and duality for linear and nonlinear mixed-integer programming, Integer and nonlinear programming, pp. 385-418. North-Holland, Amsterdam, 1970.
- M. S. Bazaraa and J. J. Goode, On symmetric duality in nonlinear programming, Operations Res. 21 (1973), 1-9. https://doi.org/10.1287/opre.21.1.1
- S. Chandra and Abha, Non-differentiable symmetric duality in minimax integer programming, Opsearch 34 (1997), no. 4, 232-241. https://doi.org/10.1007/BF03398528
- G. B. Dantzig, E. Eisenberg, and R. W. Cottle, Symmetric dual nonlinear programs, Pacific J. Math. 15 (1965), 809-812. https://doi.org/10.2140/pjm.1965.15.809
- W. S. Dorn, A symmetric dual theorem for quadratic programming. Journal of Operational Research Society, Japan. 2 (1960), 93-97.
- T. R. Gulati and S. K. Gupta, Wolfe type second-order symmetric duality in nondiffer-entiable programming, J. Math. Anal. Appl. 310 (2005), no. 1, 247-253. https://doi.org/10.1016/j.jmaa.2005.02.004
- M. A. Hanson, Second order invexity and duality in mathematical programming, Opsearch 30 (1993), 313-320.
- S. H. Hou and X. M. Yang, On second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl. 255 (2001), no. 2, 491-498. https://doi.org/10.1006/jmaa.2000.7242
- O. L. Mangasarian, Second-and higher-order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975), no. 3, 607-620. https://doi.org/10.1016/0022-247X(75)90111-0
- S. K. Mishra, Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 127 (2000), no. 3, 507-518. https://doi.org/10.1016/S0377-2217(99)00334-3
- B. Mond, Second order duality for nonlinear programs, Opsearch 11 (1974), no. 2-3, 90-99.
- X. M. Yang, X. Q. Yang, and K. L. Teo, Non-differentiable second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 144 (2003), no. 3, 554-559. https://doi.org/10.1016/S0377-2217(02)00156-X
Cited by
- On second order duality of minimax fractional programming with square root term involving generalized B-(p, r)-invex functions vol.244, pp.2, 2016, https://doi.org/10.1007/s10479-016-2147-y