DOI QR코드

DOI QR Code

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates

  • Cho, Kwon-Koo (School of Materials Science and Engineering, ERI and i-cube center, Gyeongsang National University) ;
  • Ha, Jong-Keun (School of Materials Science and Engineering, ERI and i-cube center, Gyeongsang National University) ;
  • Kim, Ki-Won (School of Materials Science and Engineering, ERI and i-cube center, Gyeongsang National University) ;
  • Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan,) ;
  • Kim, Hye-Sung (Department of Nanomaterials Engineering, College of Nanoscience & Nanotechnology, Pusan National University)
  • Received : 2011.06.21
  • Accepted : 2011.10.18
  • Published : 2011.12.20

Abstract

In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.

Keywords

References

  1. Morales, A.; Lieber, C. M. Science 1998, 279, 208. https://doi.org/10.1126/science.279.5348.208
  2. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947. https://doi.org/10.1126/science.1058120
  3. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Cates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
  4. Favier, F.; Walter, E. C.; Zach, M. P. O.; Benter, T.; Penner, R. M. Science 2001, 293, 2227. https://doi.org/10.1126/science.1063189
  5. Bogue, R. W. Sens. Rev. 2004, 24, 253. https://doi.org/10.1108/02602280410545362
  6. Yu, D.; Hang, Q.; Ding, Y.; Zhang, H.; Bai, Z.; Wang, J.; Zou, Y.; Qian, W.; Xiong, G.; Feng, S. Appl. Phys. Lett. 1998, 73, 3076. https://doi.org/10.1063/1.122677
  7. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Bello, I.; Lee, S. T. Chem. Phys. Lett. 1999, 299, 237. https://doi.org/10.1016/S0009-2614(98)01228-7
  8. Cui, Y.; Lieber, C. M. Science 2001, 291, 851. https://doi.org/10.1126/science.291.5505.851
  9. Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. https://doi.org/10.1063/1.1753975
  10. Givargizov, E. I. J. Cryst. Growth 1975, 31, 20. https://doi.org/10.1016/0022-0248(75)90105-0
  11. Yan, H. F.; Xing, Y. J.; Hang, Q. L.; Yu, D. P.; Wang, Y. P.; Xu, J.; Xi, Z. H.; Feng, S. Q. Chem. Phys. Lett. 2000, 323, 224. https://doi.org/10.1016/S0009-2614(00)00519-4
  12. Lee, K. H.; Yang, H. S.; Baik, K. H.; Bang, J.; Vanfleet, R. R.; Sigmund, W. Chem. Phys. Lett. 2004, 383, 380. https://doi.org/10.1016/j.cplett.2003.11.056
  13. Hsu, C. H.; Chan, S. Y.; Chen, C. F. Jpn. J. Appl. Phys. 2007, 46(11), 7554. https://doi.org/10.1143/JJAP.46.7554
  14. Djamila, H.-B.; Pierre, P. C. R. Chimie 2007, 10, 658. https://doi.org/10.1016/j.crci.2007.02.003
  15. Zhang, J. G.; Liu, J.; Wang, D.; Choi, D.; Fifield, L. S.; Wang, C.; Xia, G.; Nie, Z.; Yang, Z.; Pederson, L. R.; Graff, G. J. Power Sources 2010, 195, 1691. https://doi.org/10.1016/j.jpowsour.2009.09.068
  16. Srivastava, S. K.; Singh, P. K.; Singh, V. N.; Sood, K. N.; Haranath, D.; Kumar, V. Physica E 2009, 41, 1545 https://doi.org/10.1016/j.physe.2009.04.032
  17. Duraia, E. M.; Mansurov, Z. A.; Tokmolden, S.; Beall, G. W. Physica B 2010, 405, 1176. https://doi.org/10.1016/j.physb.2009.11.031