DOI QR코드

DOI QR Code

Imaging the Enzymatic Reaction of Urease Using Liquid Crystal-Based pH Sensor

  • Received : 2011.08.09
  • Accepted : 2011.10.21
  • Published : 2011.12.20

Abstract

In this study, real-time and label-free methods for monitoring the enzymatic reaction of urease, which releases ammonia through the hydrolysis of urea in an aqueous solution, were developed using a liquid crystal (LC)-based pH sensor. Nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB), doped with 4'-pentyl-biphenyl-4-carboxylic acid (PBA), exhibited a shift in optical appearance from bright to dark when it was in contact with ammonia generated from the enzymatic reaction between urease and urea. This optical change was attributed to the anchoring transitions of LCs caused by hydrophobic interactions between the tails of deprotonted PBA ($PBA^-$) molecules and the LCs at the aqueous/LC interface. This novel technique holds great promise for the sensitive detection of urease along with its substrates and inhibitors.

Keywords

References

  1. Palchetti, I.; Mascini, M. Anal. Bioanal. Chem. 2008, 391, 455. https://doi.org/10.1007/s00216-008-1876-4
  2. Serra, B.; Zhang, J.; Morales, M. D.; Guzman-Vazquez de Prada, A.; Reviejo, A. J.; Pingarron, J. M. Talanta 2008, 75, 1134. https://doi.org/10.1016/j.talanta.2008.01.009
  3. Testerman, T. L.; McGee, D. J.; Mobley, H. L. T. J. Clin. Microbiol. 2001, 39, 3842. https://doi.org/10.1128/JCM.39.11.3842-3850.2001
  4. Jang, C. H.; Stevens, B. D.; Carlier, P. R.; Calter, M. A.; Ducker, W. A. J. Am. Chem. Soc. 2002, 124, 12114. https://doi.org/10.1021/ja017686v
  5. Kranz, C.; Kueng, A.; Lugstein, A.; Bertagnolli, E.; Mizaikoff, B. Ultramicroscopy 2004, 100, 127. https://doi.org/10.1016/j.ultramic.2003.10.004
  6. Koretsky, A. P.; Brosnan, M. J.; Chen, L. H.; Chen, J. D.; Van Dyke, T. Proc. Natl. Acad. Sci. USA 1990, 87, 3112. https://doi.org/10.1073/pnas.87.8.3112
  7. Kim, Y.; Hong, I. S. Bull. Korean Chem. Soc. 2009, 30, 2149. https://doi.org/10.5012/bkcs.2009.30.9.2149
  8. Wang, M.; Gu, X.; Zhang, G.; Zhang, D.; Zhu, D. Langmuir 2009, 25, 2504. https://doi.org/10.1021/la803870v
  9. Das, G.; Talukdarand, P.; Matile, S. Science 2002, 22, 1600.
  10. Jang, C. H.; Tingey, M. L.; Korpi, N. L.; Abbott, N. L. J. Am. Chem. Soc. 2005, 127, 8912. https://doi.org/10.1021/ja051079g
  11. Park, M. K.; Jang, C. H. Bull. Korean Chem. Soc. 2010, 31, 1223. https://doi.org/10.5012/bkcs.2010.31.5.1223
  12. Jang, C. H.; Cheng L.-L.; Olsen C. W.; Abbott, N. L. Nano Lett. 2006, 6, 1053. https://doi.org/10.1021/nl060625g
  13. Brake, J. M.; Daschner, M. K.; Luk, Y. Y.; Abbott, N. L. Science 2003, 302, 2094. https://doi.org/10.1126/science.1091749
  14. Brake, J. M.; Daschner, M. K.; Abbott, N. L. Langmuir 2005, 21, 2218. https://doi.org/10.1021/la0482397
  15. Park, J. S.; Teren, S.; Tepp, W. H.; Beebe, D. J.; Johnson, E. A.; Abbott, N. L. Chem. Mater. 2006, 18, 6147. https://doi.org/10.1021/cm0606732
  16. Bi, X.; Hartono, D.; Yang, K.-L. Adv. Funct. Mater. 2009, 19, 3760. https://doi.org/10.1002/adfm.200900823
  17. Park, J. S.; Abbott, N. L. Adv. Mater. 2008, 20, 1185. https://doi.org/10.1002/adma.200702012
  18. Hu, Q. Z.; Jang, C. H. Bull. Korean Chem. Soc. 2010, 31, 1262. https://doi.org/10.5012/bkcs.2010.31.5.1262
  19. Price, A. D.; Schwartz, D. K. J. Am. Chem. Soc. 2008, 130, 8188. https://doi.org/10.1021/ja0774055
  20. Hartono, D.; Xue, C.-Y.; Yang, K.-L.; Lanry Yung, L.-Y. Adv. Funct. Mater. 2009, 19, 3574. https://doi.org/10.1002/adfm.200901020
  21. Kinsinger, M. I.; Sun, B.; Abbott, N. L.; Lynn, D. M. Adv. Mater. 2007, 19, 4208. https://doi.org/10.1002/adma.200700718
  22. Brake, J. M.; Abbott, N. L. Langmuir 2002, 18, 6101. https://doi.org/10.1021/la011746t

Cited by

  1. Liquid crystals: emerging materials for use in real-time detection applications vol.3, pp.35, 2015, https://doi.org/10.1039/C5TC01321F
  2. Optimization of a Liquid Crystal-based Sensory Platform for Monitoring Enzymatic Glucose Oxidation vol.37, pp.5, 2016, https://doi.org/10.1002/bkcs.10736
  3. In vitro detection of human breast cancer cells (SK-BR3) using herceptin-conjugated liquid crystal microdroplets as a sensing platform vol.4, pp.10, 2016, https://doi.org/10.1039/C6BM00404K
  4. Construction of a Liquid Crystal-Based Sensing Platform for Sensitive and Selective Detection of L-Phenylalanine Based on Alkaline Phosphatase vol.35, pp.2, 2019, https://doi.org/10.1021/acs.langmuir.8b03682
  5. Nanoparticle-assisted optical sensor for clinical diagnosis of tuberculosis vol.147, pp.None, 2011, https://doi.org/10.1016/j.microc.2019.03.089
  6. Fabrication of Liquid Crystal Droplet Patterns for Monitoring Aldehyde Vapors vol.84, pp.10, 2011, https://doi.org/10.1002/cplu.201900470