DOI QR코드

DOI QR Code

Binding energy of H2 to MOF-5: A Model Study

  • Received : 2011.08.02
  • Accepted : 2011.09.28
  • Published : 2011.12.20

Abstract

Using models simulating the environment of two distinct adsorption sites of $H_2$ in metal-organic framework-5 (MOF-5), binding energies of $H_2$ to MOF-5 were evaluated at the MP2 and CCSD(T) level. For organic linker section modeled as dilithium 1,4-benzenedicarboxylate ($C_6H_4(COO)_2Li_2$), the MP2 and CCSD(T) basis set limit binding energies are estimated to be 5.1 and 4.4 kJ/mol, respectively. For metal oxide cluster section modeled as $Zn_4O(CO_2H)_6$, while the MP2 basis set limit binding energy estimate amounts to 5.4 kJ/mol, CCSD(T) correction to the MP2 results is shown to be insignificant with basis sets of small size. Substitution of benzene ring with pyrazine ring in the model for the organic linker section in MOF-5 is shown to decrease the $H_2$ binding energy noticeably at both the MP2 and CCSD(T) level, in contrast to the previous study based on DFT calculation results which manifested substantial increase of $H_2$ binding energies upon substitution of benzene ring with pyrazine ring in the similar model.

Keywords

References

  1. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. https://doi.org/10.1038/46248
  2. Eddaoudi, M.; Kim, J.; Rosi, N. L.; Vodak, D. T.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. https://doi.org/10.1126/science.1067208
  3. Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.-B.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523. https://doi.org/10.1038/nature02311
  4. Sagara, T.; Klassen, J.; Ganz, E. J. Chem. Phys. 2004, 121, 12543. https://doi.org/10.1063/1.1809608
  5. Sagara, T.; Klassen, J.; Ortony, J.; Ganz, E. J. Chem. Phys. 2005, 123, 014701. https://doi.org/10.1063/1.1944730
  6. Sagara, T.; Ortony, J.; Ganz, E. J. Chem. Phys. 2005, 123, 214707. https://doi.org/10.1063/1.2133734
  7. Panella, B.; Hirscher, M. Adv. Mater. 2005, 175, 38541.
  8. Yildirim, T.; Hartman, M. R. Phys. Rev. Lett. 2005, 95, 215504. https://doi.org/10.1103/PhysRevLett.95.215504
  9. Mulder, F. M.; Dingemans, T. J.; Wagemaker, M.; Kearley, G. J. Chem. Phys. 2005, 317, 113. https://doi.org/10.1016/j.chemphys.2005.06.003
  10. Yang, Q.; Zhong, C. J. Phys. Chem. B 2005, 109, 11862. https://doi.org/10.1021/jp051903n
  11. Garberoglio, G.; Skoulidas, A. I.; Johnson, J. K. J. Phys. Chem. B 2005, 109, 13094. https://doi.org/10.1021/jp050948l
  12. Mueller, T.; Ceder, G. J. Phys. Chem. B 2005, 109, 17974. https://doi.org/10.1021/jp051202q
  13. Bordiga, S.; Vitillo, J. G.; Ricchiardi, G.; Regli, L.; Cocina, D.; Zecchina, A.; Arstad, B.; Bjørgen, M.; Hafizovic, J.; Lillerud, K. P. J. Phys. Chem. B 2005, 109, 18237. https://doi.org/10.1021/jp052611p
  14. Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688. https://doi.org/10.1021/la0523816
  15. Samanta, A.; Furuta, T.; Li, J. J. Chem. Phys. 2006, 125, 084714. https://doi.org/10.1063/1.2337287
  16. Lochan, R. C.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 1357. https://doi.org/10.1039/b515409j
  17. Panella, B.; Hirscher, M.; Putter, H.; Mller, U. Adv. Funct. Mater. 2006, 16, 520. https://doi.org/10.1002/adfm.200500561
  18. Dailly, A.; Vajo, J. J.; Ahn, C. C. J. Phys. Chem. B 2006, 110, 1099. https://doi.org/10.1021/jp0563538
  19. Li, Y.; T. Yang, R. J. Am. Chem. Soc. 2006, 128, 8136. https://doi.org/10.1021/ja061681m
  20. Kaye,S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176. https://doi.org/10.1021/ja076877g
  21. Zhang, L.; Wang, Q.; Liu, Y.-C. J. Phys. Chem. B 2007, 111, 4291. https://doi.org/10.1021/jp0713918
  22. Srepusharawoot, P.; Araujo, C. M.; Blomqvist, A.; Scheicher, R. H.; Ahuja, R. J. Chem. Phys. 2008, 129, 164104. https://doi.org/10.1063/1.2997377
  23. van den Berg, A. W. C.; Otero Arean, C. Chem. Commun. 2008, 668.
  24. Cabria, I.; Lopez, M. J.; Alonso, J. A. Phys. Rev. B 2008, 78, 205432. https://doi.org/10.1103/PhysRevB.78.205432
  25. Belof, J.; Stern, A. C.; Space, B. J. Phys. Chem. C 2009, 113, 9316. https://doi.org/10.1021/jp901988e
  26. Sillar, K.; Hofmann, A.; Sauer, J. J. Am. Chem. Soc. 2009, 131, 4143. https://doi.org/10.1021/ja8099079
  27. Zhang, L.; Wang, Q.; Liu, Y.-C.; Wu, T.; Dhen, D.; Wang, X-P. Chem. Phys. Lett. 2009, 469, 261. https://doi.org/10.1016/j.cplett.2009.01.003
  28. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968. https://doi.org/10.1063/1.453520
  29. Park, Y. C.; Lee, J. S. J. Phys. Chem. A 2006, 110, 5091. https://doi.org/10.1021/jp0582888
  30. Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
  31. Woon, D. E.; Dunning, T. H., Jr. Mol. Phys. 1993, 98, 135.
  32. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
  34. Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45. https://doi.org/10.1016/S0009-2614(98)00866-5
  35. Huh, S. B.; Lee, J. S. J. Chem. Phys. 2003, 118, 3035. https://doi.org/10.1063/1.1534091

Cited by

  1. Improved Hydrogen Storage and Thermal Conductivity in High-Density MOF-5 Composites vol.116, pp.38, 2012, https://doi.org/10.1021/jp305524f