DOI QR코드

DOI QR Code

Assessment of the Performance of B2PLYP-D for Describing Intramolecular π-π and σ-π Interactions

  • Choi, Tae-Hoon (Department of Chemical Engineering Education, Chungnam National University) ;
  • Han, Young-Kyu (Division of Materials Science, Korea Basic Science Institute)
  • Received : 2011.09.15
  • Accepted : 2011.09.28
  • Published : 2011.12.20

Abstract

Intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions are omnipresent for numerous energetic and structural phenomena in nature, and the exact description of these nonbonding interactions plays an important role in the accurate prediction of the three-dimensional structures for numerous interesting molecular systems such as protein folding and polymer shaping. We have selected two prototype molecular systems for benchmarking calculations of intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions. Accurately describing conformational energy of such systems requires highly elaborate but very expensive ab initio methods such as coupled cluster singles, doubles, and (triples) (CCSD(T)). Our calculations reveal a double hybrid density functional incorporating dispersion correction (B2PLYP-D) that agrees excellently with the CCSD(T) results, indicating that B2PLYP-D can serve as a practical method of choice.

Keywords

References

  1. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  2. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  3. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  4. Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175. https://doi.org/10.1016/0009-2614(94)01027-7
  5. Hobza, P.; Sponer, J.; Reschel, T. J. Comp. Chem. 1995, 16, 1315. https://doi.org/10.1002/jcc.540161102
  6. Perez-Jorda, J. M.; San-Fabian, E.; Perez-Jimenez, A. J. J. Chem. Phys. 1999, 110, 1916. https://doi.org/10.1063/1.477858
  7. Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 1009. https://doi.org/10.1021/ct060044j
  8. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364. https://doi.org/10.1021/ct0502763
  9. Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 289. https://doi.org/10.1021/ct6002719
  10. Zhao, Y.; Truhlar, D. G. Acc Chem. Res. 2008, 41, 157. https://doi.org/10.1021/ar700111a
  11. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. https://doi.org/10.1063/1.3382344
  12. Grimme, S. J. Comput. Chem. 2004, 25, 1463. https://doi.org/10.1002/jcc.20078
  13. Jurecka, P.; Cerny, J.; Hobza, P.; Salahub, D. R. J. Comput. Chem. 2007, 28, 555. https://doi.org/10.1002/jcc.20570
  14. von Lilienfeld, O. A; Tavernelli, I.; Röthlisberger, U.; Sebastiani,D. Phys. Rev. Lett. 2004, 93, 153004. https://doi.org/10.1103/PhysRevLett.93.153004
  15. von Lilienfeld, O. A.; Tavernelli, I.; Röthlisberger, U.; Sebastiani, D. Phys. Rev. B 2005, 71, 195119. https://doi.org/10.1103/PhysRevB.71.195119
  16. Lin, I.-C.; Seitsonen, A. P.; Coutinho-Neto, M. D.; Tavernelli, I.; Rothlisberger, U. J. Phys. Chem. B 2009, 13, 1127.
  17. Grimme, S. J. Chem. Phys. 2006, 124, 034108. https://doi.org/10.1063/1.2148954
  18. Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397. https://doi.org/10.1039/b704725h
  19. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
  20. Xu, B.-H.; Kehr, G.; Frohlich, R.; Grimme, S.; Erker, G. J. Am. Chem. Soc. 2011, 133, 3480. https://doi.org/10.1021/ja1092369
  21. Eshuis, H.; Furche, F. J. Phys. Chem. Lett. 2011, 2, 983. https://doi.org/10.1021/jz200238f
  22. Saki , D.; Zipse, H.; Vr ek, V. Org. Biomol. Chem. 2011, 9, 4336. https://doi.org/10.1039/c1ob05077j
  23. Seal, P. J. Comput. Chem. 2010, 31, 2001.
  24. Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. J. Chem. Theory Comput. 2010, 6, 2115. https://doi.org/10.1021/ct100212p
  25. Takatani, T.; Hohenstein, E. G.; Malagoli, M.; Marshall, M. S.; Sherrill, C. D. J. Chem. Phys. 2010, 132, 144104. https://doi.org/10.1063/1.3378024
  26. Steinmann, S. N.; Csonka, G.; Corminboeuf, C. J. Chem. Theory Comput. 2009, 5, 2950. https://doi.org/10.1021/ct9002509
  27. Vazquez-Mayagoitia, A.; Sherrill, C. D.; Apra, E.; Sumpter, B. G. J. Chem. Theory Comput. 2010, 6, 727. https://doi.org/10.1021/ct900551z
  28. Baquero, E. E.; James, W. H.; Choi, T.-H.; Jordan, K. D.; Zwier, T. S. J. Phys. Chem. A 2008, 112, 11115. https://doi.org/10.1021/jp806787p
  29. Clarkson, J. R.; Dian, B. C.; Moriggi, L.; DeFusco, A.; McCarthy, V.; Jordan, K. D.; Zwier, T. S. J. Chem. Phys. 2005, 122, 214311. https://doi.org/10.1063/1.1924454
  30. Lerman, L. S. J. Mol. Biol. 1961, 3, 18. https://doi.org/10.1016/S0022-2836(61)80004-1
  31. Crothers, D. M.; Zimm, B. H. J. Mol. Biol. 1967, 9, 1.
  32. Burley, S. K.; Petsko, G. A. Science 1985, 229, 23. https://doi.org/10.1126/science.3892686
  33. Hunter, C. A.; Singh, J.; Thornton, J. M. J. Mol. Biol. 1991, 218, 837. https://doi.org/10.1016/0022-2836(91)90271-7
  34. Ju, S.-Y.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Nat. Nanotechnol. 2008, 3, 356. https://doi.org/10.1038/nnano.2008.148
  35. Xu, Z.; Yang, X.; Yang, Z. Nano Lett. 2010, 10, 985. https://doi.org/10.1021/nl9041005
  36. Tummala N. R.; Morrow, B. H.; Resasco, D. E.; Striolo, A. ACS Nano. 2010, 12, 7193.
  37. Sun, W.; Bu, Y. J. Phys. Chem. C 2011, 115, 3220. https://doi.org/10.1021/jp108812z
  38. Noga, J.; Bartlett, R. J. J. Chem. Phys. 1987, 86, 7041. https://doi.org/10.1063/1.452353
  39. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479. https://doi.org/10.1016/S0009-2614(89)87395-6
  40. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764. https://doi.org/10.1063/1.477422
  41. Smith, Q. A.; Gordon, M. S.; Slipchenko, L. V. J. Phys. Chem. A 2011, 115, 4598. https://doi.org/10.1021/jp201039b
  42. Hujo,W.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 13942. https://doi.org/10.1039/c1cp20591a
  43. Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Burant, J.; Iyengar, S. S.; Tomasi, J.;; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Parandekar, P. V.; Mayhall, N. J.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fo, D. J. Gaussian, Inc.: Wallingford, CT, 2009.
  44. TURBOMOLE (Vers. 5.7): Ahlrichs, R.; Bar, M.; Baron, H.-P.; Bauernschmitt, R.; Bocker, S.; Ehrig, M.; Eichkorn, K.; Elliott, S.; Furche, F.; Haase, F.; Haser, M.; Horn, H.; Huber, C.; Huniar, U.; Kattannek, M.; Kolmel, C.; Kollwitz, M.; May, K.; Ochsenfeld, C.; Ohm, H.; Schafer, A.; Schneider, U.; Treutler, O.; von Arnim, M.; Weigend, F.; Weis, P.; Weiss, H.; Universitat Karlsruhe, 2005, see also: http://www.turbomole.com.
  45. Neese, F. ORCA-An Ab Initio, Density Functional and Semiempirical Program Package (University of Bonn, Germany, 2007).
  46. MOLPRO, a package of ab initio programs, Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Rauhut, G.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Lloyd, A. W.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T., 2006.

Cited by

  1. Quantum Chemical Challenges for the Binding of Simple Alkanes to Supramolecular Hosts vol.117, pp.43, 2013, https://doi.org/10.1021/jp405113j
  2. Extraterrestrial Organic Molecules from [SiX]+ Ions: A Coupled Cluster Theory Inquest for Plausible Reaction Pathways vol.5, pp.8, 2021, https://doi.org/10.1021/acsearthspacechem.1c00145
  3. A density functional theory study of the hydride shift in the Eschweiler–Clarke reaction vol.34, pp.10, 2011, https://doi.org/10.1002/poc.4253