DOI QR코드

DOI QR Code

A Conceptual Soil Water Model of Catchment Water Balance: Which Hydrologic Components are Needed to Calibrate the Model?

유역 물수지 모의를 위한 개념적인 토양수분모형: 모형 보정에 필요한 수문성분 분석

  • 최대규 (부경대학교 환경공학과) ;
  • 양정석 (국민대학교 건설시스템공학부) ;
  • 정건희 (한국건설기술연구원 수자원연구실) ;
  • 김상단 (부경대학교 환경공학과)
  • Received : 2010.08.26
  • Accepted : 2011.03.23
  • Published : 2011.06.30

Abstract

In this study a conceptual soil water model is proposed to simulate water balance at catchment scale. The model is based on the sequential separation of daily precipitation into surface runoff, wetting, vaporization, and percolation. The proposed model is calibrated by using three observation sets: empirically estimated annual vaporization, monthly wetting estimated by NRCS-CN method, and both of them. The model performance is evaluated to understand which hydrologic components for calibrating the model are needed. It is shown that both of annual vaporization and monthly wetting are indispensable hydrologic components to simulate reasonably precipitation partitioning.

본 연구에서는 유역 물수지 모의를 위한 개념적인 토양수분모형이 제안된다. 모형은 지표면에 떨어지는 강수량이 지표면 유출, 습윤, 기화, 침루 등으로 분할되는 과정을 모의한다. 경험식으로 추정된 연별 기화량, NRCS-CN 방법으로 추정된 월별 습윤량 및 이 두 가지가 모두 주어진 경우를 구분하여 모형의 매개변수가 각각 추정되어 모형의 성능을 평가한다. 연별 기화량과 월별 습윤량 자료 모두가 모형 보정에 적용될 경우만이 보다 합리적인 강수분할이 모의될 수 있음이 분석된다.

Keywords

References

  1. 한수희, 김상단(2008) 토양수분과 식생의 물 압박에 대한 생태수 문학적 해석: 추계학적 모형의 유도와 적용을 중심으로, 수질보전 한국물환경학회지, 한국물환경학회, 제24권, pp. 99-106.
  2. 한수희, 김상단(2009) Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해, 수질보전 한국물환경학회지, 한국물환경학회, 제25권, pp. 112-119.
  3. 한수희, 안재현, 김상단(2009) 토양수분의 추계학적 거동과 기후 변화가 미치는 영향, 한국수자원학회논문집, 한국수자원학회, 제42권, pp. 433-443.
  4. Allen, M.R. and Ingram, W.J. (2002) Constraints on future changes in climate and the hydrologic cycle. Nature, Vol. 419. pp. 224-232. https://doi.org/10.1038/nature01092
  5. Beven, K. (2006) Benchmark Papers in Storm Runoff Generation. IAHS Press, Wallingford, UK.
  6. Budyko, M.I. (1974) Climate and life. Academic, San Diego, California, USA.
  7. Chow, V.T., Maidment, D.R., and Mays, L.W. (1988) Applied Hydrology. McGraw-Hill.
  8. Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., and Lodge, D.M. (2001) Ecological forecasts: an emerging imperative. Science, Vol. 293, pp. 657-660. https://doi.org/10.1126/science.293.5530.657
  9. Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R. and Mearns, L.O. (2000) Climate extremes: observations, modeling, and impacts. Science, Vol. 289, pp. 2068-2074. https://doi.org/10.1126/science.289.5487.2068
  10. Fu, B.P. (1981) On the calculation of the evaporation from land surface. Sci. Atmos. Sin., Vol. 5, pp. 23-31.
  11. Horton, R.E. (1933) The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union. Vol. 14, pp. 446-460. https://doi.org/10.1029/TR014i001p00446
  12. Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D., Tissue, D.T., Zak, J.C., Weltzin, J.F., Pockman, W.T., Sala, O.E., Haddad, B.M., Harte, J., Koch, G. W., Schwinning, S., Small, E.E., and Williams, D.G. (2004) Convergence across biomes to a common rain use efficiency. Nature, Vol. 429, pp. 651-654. https://doi.org/10.1038/nature02561
  13. Kim, S., Han, S. and Kavvas, M.L. (2008) Analytical derivation of steady-state soil water probability density function coupled with simple stochastic point rainfall model, Journal of Hydrologic Engineering, Vol. 13, pp. 1069-1077. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:11(1069)
  14. Kim, S., Han, S., and Kim, E. (2011) Stochastic modeling of soil water and plant water stress using cumulant expansion theory, Ecohydrology, 4, pp. 94-105. https://doi.org/10.1002/eco.127
  15. Milly, P.C.D., Wetherald, R.T., Dunne, K.A., and Delworth, T.L. (2002) Increasing risk of great floods in a changing climate. Nature, Vol. 415, pp. 514-517. https://doi.org/10.1038/415514a
  16. Noy Meir, I. (1973) Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, Vol. 4, pp. 25-44. https://doi.org/10.1146/annurev.es.04.110173.000325
  17. Pike, J.G. (1964) The estimation of annual runoff from meteorlogoical data in a tropical climate. Journal of Hydrology, Vol. 2, pp. 116-123. https://doi.org/10.1016/0022-1694(64)90022-8
  18. Porporato, A. and Rodriguez-Iturbe, I. (2002) Ecohydrology: a challenging multidisciplinary research perspective. Hydrological Sciences Journal, Vol. 47, pp. 811-821. https://doi.org/10.1080/02626660209492985
  19. Potter, N.J., Zhang, L., Milly, P.C.D., McMahon, T.A., and Jakeman, A.J. (2005) Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australia catchments, Water Resource Researches, Vol. 41, W06007, doi:10./1029/2004WR003697.
  20. Rodriguez-Iturbe, I. and Porporato, A. (2004) Ecohydrology of Water-Controlled Ecosystems. Cambridge University Press, New York.
  21. Stephenson, N.L. (1990) Climatic control of vegetation distribution: the role of the water-balance. American Naturalist, Vol. 135, pp. 649-670. https://doi.org/10.1086/285067
  22. Troch, P.A., Martinez1, G.F., Pauwels, V.R.N., Durcik, M., Sivapalan, M., Harman, C., Brooks, P.D., Gupta, H. and Huxman, T. (2009) Climate and vegetation water use efficiency at catchment scales. Hydrological Process, Vol. 23, pp. 2409-2414. https://doi.org/10.1002/hyp.7358
  23. Webb, W., Szarek, S., Lauenroth, W., Kinerson, R., and Smith, M. (1986) Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology, Vol. 59, pp. 1239-1247.
  24. Yoo, C., Kim, S., and Kim, T.W. (2006) Assessment of drought vulnerability based on the soil moisture PDF. Stochastic Environmental Research and Risk Assessment, Vol. 21, pp. 131-141. https://doi.org/10.1007/s00477-006-0050-9
  25. Zhang, L., Hickel, K., Dawes, W.R., Chiew, F.H.S., Western, A.W. and Briggs, P.R. (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resources Researches, Vol. 40, W02502, doi:10.1029/2003WR002710.
  26. Zhang, L., Dawes, W.R. and Walker, G.R. (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, Vol. 37, pp. 701-708. https://doi.org/10.1029/2000WR900325