DOI QR코드

DOI QR Code

Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides

  • 투고 : 2011.08.10
  • 심사 : 2011.10.25
  • 발행 : 2011.12.25

초록

In this paper, we have proposed a principle to design wideband, low dispersion and temperature stabilized slow light structure in slotted photonic crystal waveguide (SPCW). The infiltration of the silicon photonic crystal with polymer will enhance the slow light and increase the group index, whereas the different signs of thermo-optic coefficients of polymer and silicon make the proposed structure stable on temperature variation over $60^{\circ}C$ and improves the group index-bandwidth products of the designed structure. The SPCW structure is modified to maximize the slow light effect and minimize the dependence of the group index and hence the group velocity dispersion to temperature.

키워드

참고문헌

  1. T. Baba, "Slow light in photonic crystals," Nature 2, 465-473 (2008).
  2. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40, 2666-2670 (2007). https://doi.org/10.1088/0022-3727/40/9/S07
  3. T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007). https://doi.org/10.1088/0022-3727/40/9/S06
  4. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). https://doi.org/10.1364/JOSAB.19.002052
  5. T. F. Krauss, "Why do we need slow light," Nature Photon. 2, 448-450 (2008). https://doi.org/10.1038/nphoton.2008.139
  6. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004). https://doi.org/10.1038/nmat1097
  7. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). https://doi.org/10.1063/1.1815066
  8. L. Juntao, T. P.White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 16, 6227-6232 (2008). https://doi.org/10.1364/OE.16.006227
  9. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008). https://doi.org/10.1364/OE.16.004177
  10. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, and A. Jen, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Appl. Phys. Lett. 92, 92-94 (2008).
  11. J. H. Wülbern, A. Petrov, and M. Eich, "Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator," Opt. Express 17, 304-313 (2009). https://doi.org/10.1364/OE.17.000304
  12. J. Wu, Y. Li, C. Peng, and Z. Wang, "Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration," Opt. Comm. 284, 2149-2152 (2011). https://doi.org/10.1016/j.optcom.2011.01.004
  13. F. Y. M. Chan, M. J. Kim, and B. H. Lee, "Add/drop filter for CWDM systems using side-coupled long-period fiber gratings," J. Opt. Soc. Korea 9, 135-139 (2005). https://doi.org/10.3807/JOSK.2005.9.4.135
  14. W. C. Kim and D. W. Park, "Analysis of temperature effects on raman silicon photonic devices," J. Opt. Soc. Korea 12, 288-297 (2008). https://doi.org/10.3807/JOSK.2008.12.4.288
  15. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultra compact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008). https://doi.org/10.1364/OL.33.000147
  16. D. M. Beggs, T. P. White, L. Cairns, L. O'Faolain, and T. F. Krauss, "Ultrashort photonic crystal optical switch actuated by microheater," IEEE Photon. Technol. Lett. 21, 24-26 (2009). https://doi.org/10.1109/LPT.2008.2008104
  17. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, "Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration," Opt. Express 17, 1628-1635 (2009). https://doi.org/10.1364/OE.17.001628
  18. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.
  19. J. Wu, Y. Li, C. Peng, and Z. Wang, "Wideband and low dispersion slow light in slotted photonic crystal waveguide," Opt. Comm. 283, 2815-2819 (2010). https://doi.org/10.1016/j.optcom.2010.03.037
  20. S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981-2983 (2007). https://doi.org/10.1364/OL.32.002981
  21. J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, "Controlling temperature dependence of silicon waveguide using slot structure," Opt. Express 16, 1645-1652 (2008). https://doi.org/10.1364/OE.16.001645
  22. M. Kim, J. J. Ju, S. K. Park, J. Y. Shim, and M. H. Lee, "Control of linear chirps in waveguide bragg gratings by applying designed core profiles," IEEE J. Lightwave Technol. 27, 4809-4813 (2009). https://doi.org/10.1109/JLT.2009.2025706
  23. http://www.chemoptics.co.kr/.
  24. Y. Chung, J. Song, W. Han, and U. Paek, "New compensation method for temperature sensitivity of fiber Brags grating using bi-metal," J. Opt. Soc. Korea 7, 84-88 (2003). https://doi.org/10.3807/JOSK.2003.7.2.084
  25. C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. C. McPhedran, B. J. Eggleton, L. O'Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, "Temperature stabilization of optofluidic photonic crystal cavities," Appl. Phys. Lett. 94, 231114-1-231114-3 (2009). https://doi.org/10.1063/1.3152998

피인용 문헌

  1. Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.237
  2. Theoretical research on high sensitivity gas sensor due to slow light in slotted photonic crystal waveguide vol.173, 2012, https://doi.org/10.1016/j.snb.2012.07.051
  3. Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration vol.184, 2013, https://doi.org/10.1016/j.snb.2013.04.082
  4. Performance Enhancement of Cavity Assisted Photonic Crystal De-Multiplexerin Slow Light Regime vol.20, pp.3, 2016, https://doi.org/10.3807/JOSK.2016.20.3.401
  5. Wideband Slow Light With Large Group Index and Low Dispersion in Slotted Photonic Crystal Waveguide vol.30, pp.17, 2012, https://doi.org/10.1109/JLT.2012.2207374
  6. Slow-Light Optimization of Polymer-Infiltrated Slot Photonic Crystal Waveguide vol.13, pp.4, 2014, https://doi.org/10.1109/TNANO.2014.2315824
  7. Recent advances and progress in photonic crystal-based gas sensors vol.50, pp.20, 2017, https://doi.org/10.1088/1361-6463/aa68d3
  8. Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system vol.24, pp.10, 2013, https://doi.org/10.1088/0957-0233/24/10/105109
  9. Dispersion Engineering of Slow Light in Ellipse-Shaped-Hole Slotted Photonic Crystal Waveguide vol.32, pp.11, 2014, https://doi.org/10.1109/JLT.2014.2309612
  10. Review on the Optimization Methods of Slow Light in Photonic Crystal Waveguide vol.14, pp.3, 2015, https://doi.org/10.1109/TNANO.2015.2394410
  11. Compact and Temperature Independent Electro-optic Switch Based on Slotted Silicon Photonic Crystal Directional Coupler vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.282
  12. Improved scheme for the determination of methanol using a two-dimensional photonic crystal vol.46, pp.2, 2018, https://doi.org/10.1080/10739149.2017.1345761
  13. Unidirectional Slow Light Transmission in Heterostructure Photonic Crystal Waveguide vol.8, pp.10, 2018, https://doi.org/10.3390/app8101858