• Title/Summary/Keyword: Temperature independent

Search Result 1,006, Processing Time 0.027 seconds

Design of CMOS Temperature Sensor Using Ring Oscillator (링발진기를 이용한 CMOS 온도센서 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2081-2086
    • /
    • 2015
  • The temperature sensor using ring oscillator is designed by 0.18㎛ CMOS process and the supply voltage is 1.5volts. The temperature sensor is designed by using temperature-independent and temperature-dependent ring oscillators and the output frequency of temperature-independent ring oscillator is constant with temperature and the output frequency of temperature-dependent ring oscillator decreases with increasing temperature. To convert the temperature to a digital value the output signal of temperature-independent ring oscillator is used for the clock signal and the output signal of temperature-dependent ring oscillator is used for the enable signal of counter. From HSPICE simulation results, the temperature error is less than form -0.7℃ to 1.0℃ when the operating temperature is varied from -20℃ to 70℃.

Independent Cooling Controller for Temperature Control of High Strength and Atmosphere Corrosion Resisting Steel in Hot Strip Mills (고강도 내후성강의 온도제어를 위한 ICC 제어기 개발)

  • Park, Cheol Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.327-335
    • /
    • 2015
  • In this paper, we propose an independent cooling control (ICC) scheme for high strength and atmosphere corrosion resisting steel to obtain the desired temperature and properties along the longitudinal direction of the steel in the run-out table (ROT) process. A temperature model of the independent process is developed to divide the ROT into front and back sections. The control concept uses field data, problem analysis, and a time-temperature transformation diagram. The effectiveness of the proposed control is verified using simulation results under a temperature disturbance by the transformation in the middle of the ROT. The results of a hot strip mill field test show that the temperature control performance is significantly improved by the proposed control scheme.

A Study on Characteristics of Temperature Independent Propellant Using Di-nitro-diaza-alkane Series Energetic Plasticizers(I) (Di-nitro-diaza-alkane 계열 에너지 가소제를 활용한 온도 둔감 추진제 특성 연구(I))

  • Joo, Hyun-Hye;Joo, Hyung-Uk;Kwon, Tae-Soo;Kwon, Sun-Kil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.698-701
    • /
    • 2011
  • Over recent several years, researches for the less sensitive gun propellant development have been carried out with promising the product of propellants which have temperature independent characteristics using the new energetic plasticizing mixture as Di-nitro-diaza-alkanes. During this study, the promising propellant formulation having temperature ballistic properties as well as better behaviors concerning the cold brittleness of the materials was confirmed by results in tests of a closed bomb and 40mm Gun firing. On-going research on the optimized shape, formulation and processes of the propellant is progressing. From now on it should be done present study to establish the better composition and processes.

  • PDF

Development of HPCI Prediction Model for Concrete Pavement Using Expressway PMS Database (고속도로 PMS D/B를 활용한 콘크리트 포장 상태지수(HPCI) 예측모델 개발 연구)

  • Suh, Young-Chan;Kwon, Sang-Hyun;Jung, Dong-Hyuk;Jeong, Jin-Hoon;Kang, Min-Soo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.83-95
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop a regression model to predict the International Roughness Index(IRI) and Surface Distress(SD) for the estimation of HPCI using Expressway Pavement Management System(PMS). METHODS : To develop an HPCI prediction model, prediction models of IRI and SD were developed in advance. The independent variables considered in the models were pavement age, Annual Average Daily Traffic Volume(AADT), the amount of deicing salt used, the severity of Alkali Silica Reaction(ASR), average temperature, annual temperature difference, number of days of precipitation, number of days of snowfall, number of days below zero temperature, and so on. RESULTS : The present IRI, age, AADT, annual temperature differential, number of days of precipitation and ASR severity were chosen as independent variables for the IRI prediction model. In addition, the present IRI, present SD, amount of deicing chemical used, and annual temperature differential were chosen as independent variables for the SD prediction model. CONCLUSIONS : The models for predicting IRI and SD were developed. The predicted HPCI can be calculated from the HPCI equation using the predicted IRI and SD.

A Self-Biased Current Reference in $0.25{\mu}m$ CMOS Technology

  • Park, Jae-Woo;Yoo, Chang-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.635-636
    • /
    • 2006
  • A self-biased CMOS current reference is described which provides supply and temperature independent bias current. The supply independency is obtained by subtracting two bias currents which have the same supply dependency. Unlike the conventional self-bias CMOS current reference, excellent supply independency can be obtained even with the minimum channel length devices and thus smaller area implementation becomes possible. The supply independent bias current is then applied to a temperature compensating circuit and as a result supply and temperature independent bias current is obtained. The current reference has been implemented in a $0.25{\mu}m$ standard CMOS technology. The active silicon area is only $45{\mu}m{\times}45{\mu}m$. The simulated temperature coefficient is 64ppm/$^{\circ}C$ in temperature range between $0^{\circ}C$ and $120^{\circ}C$. Supply voltage can be as low as 1.3V and the supply dependency of the current reference is measured to be smaller than 4500ppm/V. While providing $10.25{\mu}A$ output current, the current reference consumes $160{\mu}W$.

  • PDF

The 100Watt Unit Power Amplifier Using Temperature Independent Biasing for DTV Repeater Application (Temperature Independent Biasing을 사용한 DTV 중계기용 100Watt급 단위 전력증폭기의 구현)

  • Lee, Young-Sub;Jeon, Joong-Sung;Lee, Seok-Jeong;Ye, Byeong-Duck;Hong, Tchang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.215-220
    • /
    • 2002
  • In this paper, the 100 watt unit ower amplifier using temperature independent biasing for DTV (Digital Television) repeater application is designed and fabricated. The DC operation point of this unit power amplifier at temperature variation from $20^{\circ}C$ to $100^{\circ}C$ is fixed by active bias circuit. The variation of current consumption in the 100 watt unit power amplifier has an excellent characteristics of less than 0.6A. The implemented unit power amplifier has the gain over 12dB, the gain flatness of less than 0.5dB and input and output return, loss of than 15dB over the DTV repeater frequency range (470~806MHz). This unit power amplifier yields intermodulation distortion(IMD) of more than 32dBc at 2MHz offset, which satisfies the IMD at output power of 100 watt (50dBm).

The Characteristics of Pyrolytic Carbon Deposited in a Fluidized Bed by CVD (Fluidized Bed에서 화학증착법에 의해 증착된 열분해 탄소의 특성)

  • 승성표;이재영;진억용
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.156-164
    • /
    • 1984
  • The characteristic of pyrolytic carbon deposited in a fluidized bed as measured by density apparent crystallite size and viewed metallographically under polarized light can be easily controlled by adjusting the deposition parameters such as deposition temperature and propane flow rate or silicon content. The density of isotopic pyrolytic carbons deposited from propane between 120$0^{\circ}C$ and 140$0^{\circ}C$ increases with increasing propane flow rate and decreasing deposition temperature from 1, 73g/cc to 2.08g/cc. The apparent crystallite size Lc parameter appears to depend only on deposition temperature being entirely independent of the propane flow rate. The carbon matrix density of the silicon-alloyed carbonds deposited from propane and methyltrichlorosil-ane from 2.05g/cc for a silicon content around 9wt% to 2.67g/cc for a silicon content of 36.7wt% The Lc parameter of the deposition temperature being entirely independent of the silicon content.

  • PDF

Compact and Temperature Independent Electro-optic Switch Based on Slotted Silicon Photonic Crystal Directional Coupler

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.282-287
    • /
    • 2012
  • In this paper, we have proposed a principle to design a compact and temperature independent electro-optic switch based on a slotted photonic crystal directional coupler (SPCDC). Infiltration of the slotted silicon photonic crystal with polymer enhances the slow light and decreases the switching length, whereas the different signs of thermo-optic coefficients of the polymer and silicon make the proposed switch stable within $25^{\circ}C$ to $85^{\circ}C$ temperature range. The SPCDC structure is modified to increase poling efficiency of the polymer in the slot and to flatten the dispersion diagram of the even mode to minimize the switching length.

An Accurate Current Reference using Temperature and Process Compensation Current Mirror (온도 및 공정 보상 전류 미러를 이용한 정밀한 전류 레퍼런스)

  • Yang, Byung-Do
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.79-85
    • /
    • 2009
  • In this paper, an accurate current reference using temperature and process compensation current mirror (TPC-CM) is proposed. The temperature independent reference current is generated by summing a proportional to absolute temperature (PTAT) current and a complementary to absolute temperature (CTAT) current. However, the temperature coefficient and magnitude of the reference current are influenced by the process variation. To calibrate the process variation, the proposed TPC-CM uses two binary weighted current mirrors which control the temperature coefficient and magnitude of the reference current. After the PTAT and CTAT current is measured, the switch codes of the TPC-CM is fixed in order that the magnitude of reference current is independent to temperature. And, the codes are stored in the non-volatile memory. In the simulation, the effect of the process variation is reduced to 0.52% from 19.7% after the calibration using a TPC-CM in chip-by-chip. A current reference chip is fabricated with a 3.3V 0.35um CMOS process. The measured calibrated reference current has 0.42% variation for $20^{\circ}$C${\sim}$100$^{\circ}$C.

Study on the Temperature Independent Property of the Surface Coated Double Base Propellant (코팅제를 적용한 추진제의 온도둔감 특성 연구 (1))

  • Joo, Hyun-Hye;Joo, Hyung-Uk;Kwon, Tae-Soo;Jeong, June-Chang;Kwon, Sun-Kil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.529-531
    • /
    • 2012
  • The temperature coefficient of a gun propellant could be reduced by applying an appropriate surface coating material. The burning rates of those propellants do not very strongly depend on the propellant temperature. It is a good method to increase the muzzle velocity of gun ammunitions by utilizing the permissible maximum pressure in the gun barrel independent of the propellant temperature. During this study, properties of surface coated propellants were confirmed by results in tests of a closed bomb and 40mm Gun firing, and confirmed that production of coating propellant could be possible.

  • PDF