DOI QR코드

DOI QR Code

Rapid One-pot, Four Component Synthesis of Pyranopyrazoles Using Heteropolyacid Under Solvent-free Condition

  • Chavan, Hemant V. (Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University) ;
  • Babar, Santosh B. (Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University) ;
  • Hoval, Rahul U. (Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University) ;
  • Bandgar, Babasaheb P. (Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University)
  • Received : 2011.08.26
  • Accepted : 2011.09.11
  • Published : 2011.11.20

Abstract

A series of pyranopyrazoles, was efficiently synthesized via one-pot, four component reaction of ethyl acetoacetate, hydrazine hydrate, aldehydes and malononitrile in the presence of catalytic amount silicotungstic acid under solvent free condition. NOE experiments confirmed that the product exist exclusively in the 2H form. The present protocol offers the advantages of clean reaction, short reaction time, high yield, easy purification and economic availability of the catalyst.

Keywords

References

  1. Clark, J. H. Acc. Chem. Res. 2002, 35, 791. https://doi.org/10.1021/ar010072a
  2. Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171. https://doi.org/10.1021/cr960400y
  3. Kozhevnikov, I. V.; Derouane, E., Eds., In Catalysis for Fine Chemical Synthesis, Catalysis by Polyoxometalates 2; Wiley: New York, 2002.
  4. Romanelli, G. P.; Bennardi, D.; Ruiz, D. M.; Baronetti, G.; Thomas, H. J.; Autino, J. C. Tetrahedron Lett. 2004, 45, 8935.
  5. Torok, B.; Bucsi, I.; Beregszaszi, T.; Kapocsi, I.; Molnar, A. J. Mol. Cat A: Chem. 1996, 107, 305. https://doi.org/10.1016/1381-1169(95)00225-1
  6. Torok, B.; Bucsi, I.; Beregszaszi, T.; Kapocsi, I.; Molnar, A. Catalysis of Organic Reactions; Marcel Dekker: New York, 1996; p 393.
  7. Molnar, A.; Beregszaszi, T. Tetrahedron Lett. 1997, 37, 8597.
  8. Beregzazi, T.; Torok, B.; Molnar, A.; Olah, G. A.; Prakash, G. K. S. Catalysis Lett. 1997, 48, 83. https://doi.org/10.1023/A:1019058516695
  9. Molnar, A.; Keresszegi, C. S.; Beregszaszi, T.; Torok, B.; Bartok, M. Catalysis of Organic Reactions; Marcell Dekker: New York, 1998; p 507.
  10. Kamakshi, R.; Reddy, B. S. R. Catalysis Commun. 2007, 8, 825. https://doi.org/10.1016/j.catcom.2006.08.044
  11. Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 662. https://doi.org/10.1016/j.tetlet.2008.11.105
  12. Rafiee, E.; Shahbhazi, F. J. Mol. Cat A: Chemical. 2006, 250, 57. https://doi.org/10.1016/j.molcata.2006.01.049
  13. Rafiee, E.; Shahbhazi, F.; Joshaghani, M.; Tork, F. J. Mol. Cat A: Chemical. 2005, 242, 129. https://doi.org/10.1016/j.molcata.2005.08.005
  14. Wang, J. L.; Liu, D.; Zhang, Z. J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7124. https://doi.org/10.1073/pnas.97.13.7124
  15. El-Tamany, E. S.; El-Shahed, F. A.; Mohamed, B. H. J. Serb. Chem. Soc. 1999, 64, 9.
  16. Zaki, M. E. A.; Soliman, H. A.; Hiekal, O. A.; Rashad, A. E. Z. Naturforsch. C. 2006, 61c, 1.
  17. Abdelrazek, F. M.; Metz, P.; Metwally, N. H.; El-Mahrouky, S. F. Arch. Pharm. 2006, 339, 456. https://doi.org/10.1002/ardp.200600057
  18. Abdelrazek, F. M.; Metz, P.; Kataeva, O.; Jager, A.; EI-Mahrouky, S. F. Arch. Pharm. 2007, 340, 543. https://doi.org/10.1002/ardp.200700157
  19. Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G. S.; Surgenor, A. E. Bioorg. Med. Chem. 2006, 14, 4792. https://doi.org/10.1016/j.bmc.2006.03.021
  20. Sosnovskikh, V. Y.; Barabanov, M. A.; Usachev, B. I.; Irgashev, R. A.; Moshkin, V. S. Russ. Chem. Bull., Int. Ed. 2005, 54, 2846.
  21. El-Assiery, S. A.; Sayed, G. H.; Acta Pharm. 2004, 54, 143.
  22. Guard, J. A. M.; Steel, P. J. ARKIVOC 2001, vii, 32.
  23. Rodinovskaya, L. A.; Gromova, A. V.; Shestopalov, A. M.; Nesterov, V. N. Russ. Chem. Bull., Int. Ed. 2003, 52, 2207. https://doi.org/10.1023/B:RUCB.0000011880.05561.c1
  24. Otto, H. H. Arch. Pharm. 1974, 307, 444.
  25. Otto, H. H.; Schmelz, H. Arch. Pharm. 1979, 312, 478. https://doi.org/10.1002/ardp.19793120604
  26. Junek, H.; Aigner, H. Chem. Ber. 1973, 106, 914. https://doi.org/10.1002/cber.19731060323
  27. Wamhoff, H.; Kroth, E.; Strauch, K. Synthesis 1993, 11, 1129.
  28. Tacconi, G.; Gatti, G.; Desimoni, G. J. Prakt. Chem. 1980, 322, 831. https://doi.org/10.1002/prac.19803220519
  29. Sharanin Yu, A.; Sharanina, L. G.; Puzanova, V. V. Zh. Org. Khim. 1983, 19, 2609.
  30. Vasuki, G.; Kumaravel, K. Tetrahedron Letters 2008, 49, 5636. https://doi.org/10.1016/j.tetlet.2008.07.055
  31. Kuppusamy, K.; Kasi, P. Tetrahedron Letters 2010, 51, 3312. https://doi.org/10.1016/j.tetlet.2010.04.087
  32. Mecadon, H.; Rohman, Md. R.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 2523. https://doi.org/10.1016/j.tetlet.2011.03.036
  33. Mecadon, H.; Rohman, Md. R.; Kharbangar, I.; Laloo, B. M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 3228. https://doi.org/10.1016/j.tetlet.2011.04.048
  34. Bandgar, B. P.; Bettigeri, S. V.; Phopse, J. Org. Lett. 2004, 6, 2105. https://doi.org/10.1021/ol049692c
  35. Bandgar, B. P.; Bandgar, S. B.; Korbad, B. L.; Sawant, S. S. Tetrahedron Lett. 2007, 48, 1287. https://doi.org/10.1016/j.tetlet.2006.12.024
  36. Bandgar, B. P.; Korbad, B. L.; Patil, S. A.; Bandgar, S. B.; Chavan, H. V.; Hote, B. S. Aust. J. Chem. 2008, 61, 700. https://doi.org/10.1071/CH08106
  37. Bandgar, B. P.; Patil, S. A.; Korbad, B. L.; Bandgar, S. B.; Hote, B. S. Aust. J. Chem. 2008, 61, 552. https://doi.org/10.1071/CH08041

Cited by

  1. Pods: An Efficient Surfactant Type Catalyst for Synthesis of 3-Carboxycoumarins and Cinnamic Acids via Knoevenagel Condensation vol.1, pp.8, 2013, https://doi.org/10.1021/sc4000237
  2. Cerium ammonium nitrate (CAN)-catalyzed four-component one-pot synthesis of multi-substituted pyrano[2,3- $$\varvec{c}$$ c ]pyrazoles under ultrasound irradiation vol.17, pp.4, 2013, https://doi.org/10.1007/s11030-013-9465-7
  3. ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for Four-Component One-Pot Green Synthesis of Pyranopyrazole Derivatives in Water vol.2013, pp.1537-744X, 2013, https://doi.org/10.1155/2013/680671
  4. Nano-ZnO Catalyzed Green and Efficient One-Pot Four-Component Synthesis of Pyranopyrazoles vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/840954
  5. Synthesis of 6-amino-4-(4-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles using disulfonic acid imidazolium chloroaluminate as a dual and heterogeneous catalyst vol.37, pp.12, 2013, https://doi.org/10.1039/c3nj00629h
  6. An Efficient Multi-component Synthesis of 6-Amino-3-methyl-4-Aryl-2,4- dihydropyrano[2,3-c]Pyrazole-5-carbonitriles vol.45, pp.5, 2013, https://doi.org/10.1080/00304948.2013.816220
  7. Applications of heteropoly acids in multi-component reactions vol.11, pp.1, 2014, https://doi.org/10.1007/s13738-013-0291-8
  8. ZnS nanoparticles as an efficient and reusable catalyst for synthesis of 4H-pyrano[2,3-c]pyrazoles vol.12, pp.6, 2015, https://doi.org/10.1007/s13738-014-0571-y
  9. /MNPs): an efficient magnetically recyclable catalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives vol.5, pp.91, 2015, https://doi.org/10.1039/C5RA11343A
  10. An efficient catalyst- and solvent-free method for the synthesis of medicinally important dihydropyrano[2,3-c]pyrazole derivatives using ball milling technique vol.13, pp.3, 2016, https://doi.org/10.1007/s13738-015-0793-7
  11. ]pyrazoles vol.31, pp.6, 2016, https://doi.org/10.1002/aoc.3633
  12. Synthesis of dihydropyrano[2,3-c]pyrazoles using Ca9.5Mg0.5(PO4)5.5(SiO4)0.5F1.5 as a new nano cooperative catalyst vol.122, pp.1, 2017, https://doi.org/10.1007/s11144-017-1217-8
  13. nanoparticle-supported IL) as a novel, green and heterogeneous catalyst vol.31, pp.12, 2017, https://doi.org/10.1002/aoc.3816
  14. Using magnetized water as a solvent for a green, catalyst-free, and efficient protocol for the synthesis of pyrano[2,3-c]pyrazoles and pyrano[4′,3′:5,6]pyrazolo [2,3-d]pyrimidines vol.43, pp.2, 2017, https://doi.org/10.1007/s11164-016-2680-y
  15. CeO2/ZrO2 as green catalyst for one-pot synthesis of new pyrano[2,3-c]-pyrazoles vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2878-7
  16. as a new Schiff base complex and catalyst pp.02682605, 2017, https://doi.org/10.1002/aoc.3968
  17. Synergetic effects of naturally sourced metal oxides in organic synthesis: a greener approach for the synthesis of pyrano[2,3-c]pyrazoles and pyrazolyl-4H-chromenes pp.1568-5675, 2018, https://doi.org/10.1007/s11164-017-3197-8
  18. Synthesis of Pyranopyrazoles Using Magnetically Recyclable Heterogeneous Iron Oxide-silica Core-shell Nanocatalyst vol.62, pp.12, 2015, https://doi.org/10.1002/jccs.201400387
  19. ) Catalyzed Synthesis of Fused 7-Azaindole Derivatives Using Domino Knoevenagel-Michael Reaction vol.63, pp.4, 2016, https://doi.org/10.1002/jccs.201500540
  20. MIL-53(Fe) Metal-Organic Frameworks (MOFs) as an Efficient and Reusable Catalyst for the One-Pot Four-Component Synthesis of Pyrano[2,3-c]-pyrazoles pp.02682605, 2018, https://doi.org/10.1002/aoc.4679
  21. -chromene pp.1945-5453, 2019, https://doi.org/10.1080/00304948.2018.1549903
  22. Design and development of a new functionalized cellulose-based magnetic nanocomposite: preparation, characterization, and catalytic application in the synthesis of diverse pyrano[2,3-c]pyrazole derivatives pp.1735-2428, 2019, https://doi.org/10.1007/s13738-019-01610-9
  23. Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst vol.3, pp.48, 2011, https://doi.org/10.1039/c3ra45289a
  24. Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst vol.3, pp.48, 2011, https://doi.org/10.1039/c3ra45289a
  25. An Efficient Solvent-Free Synthesis of Naphthopyranopyrimidines Using Heteropolyacid as an Ecofriendly Catalyst vol.44, pp.4, 2011, https://doi.org/10.1080/15533174.2013.783858
  26. A highly efficient and sustainable synthesis of dihydropyrano[2,3-c]pyrazoles using polystyrene-supported p-toluenesulfonic acid as reusable catalyst vol.1, pp.1, 2011, https://doi.org/10.1080/23312009.2015.1063830
  27. Synthesis and Antimicrobial Screening of Pyrimidine Annulated Dihydropyrano[2, 3-c]pyrazole Derivatives vol.62, pp.2, 2011, https://doi.org/10.5012/jkcs.2018.62.2.87
  28. One‐Pot Multicomponent Synthesis of Pyrano[2,3 c]pyrazole Derivatives Using CMCSO 3 H as a Green Catalyst vol.4, pp.31, 2011, https://doi.org/10.1002/slct.201901676
  29. A Brief Study on the Role of Silicotungstic Acid in Modern Organic Syntheses vol.32, pp.10, 2020, https://doi.org/10.14233/ajchem.2020.22847
  30. Synthesis of Some Novel Antimicrobial and Antioxidant Agents of Functionalized Pyrazolo[4',3':5,6]pyrano[3,2-d]- [1,2]azaphospholes and Pyrazolo[4',3':5,6]pyrano[2,3-d][1,3,2]diazaphosphinines vol.100, pp.11, 2011, https://doi.org/10.3987/com-20-14325
  31. An expedient and eco-friendly approach for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles using nano-Al2O3/BF3/Fe3O4 as reusable catal vol.50, pp.1, 2011, https://doi.org/10.1080/24701556.2019.1661458
  32. Green synthesis of pyranopyrazoles via biocatalytic one-pot Knoevenagel condensation-Michael-type addition-heterocyclization cascade in non-aqueous media vol.46, pp.5, 2011, https://doi.org/10.1007/s11164-020-04122-x
  33. A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles vol.41, pp.2, 2011, https://doi.org/10.1080/10406638.2019.1584576