DOI QR코드

DOI QR Code

Simple Ratiometric Fluorophore for the Selective Detection of Mercury through Hg(II)-Mediated Oxazole Formation

  • Lee, Hee-Jin (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Hae-Jo (Department of Chemistry, Hankuk University of Foreign Studies)
  • Received : 2011.08.22
  • Accepted : 2011.09.09
  • Published : 2011.11.20

Abstract

A simple propargylamide-fuctionalized chemodosimeter was prepared for the ratiometric fluorescence detection of mercuric ions in HEPES buffer. The chemodosimeter exhibited $Hg^{2+}$-induced propargyl amide-tooxazole transformation, with a significant accompanying ratiometric change in fluorescence. It afforded high selectivity for mercuric ion detection without any competitive inhibition by common alkali, alkaline earth, or other transition metal ions. The probe showed a $17{\times}10^{-6}M$ detection limit for $Hg^{2+}$ ions and potential applicability for detecting aqueous $Hg^{2+}$ ions.

Keywords

References

  1. Huang, C.-C.; Chang, H. T. Anal Chem. 2006, 78, 8332-8338. https://doi.org/10.1021/ac061487i
  2. Zheng, W.; Aschner, M.; Ghersi-Egea, J.-F. Toxicol. Appl. Pharmacol. 2003, 192, 1-11. https://doi.org/10.1016/S0041-008X(03)00251-5
  3. Hoyle, I.; Handy, R. D. Aquat Toxicol. 2005, 72, 147-159. https://doi.org/10.1016/j.aquatox.2004.11.015
  4. Vupputuri, S.; Longnecker, M. P.; Daniels, J. L.; Guo, X.; Sandler, D. P. Environ. Res. 2005, 97, 194-199.
  5. Baughman, T. A. Environ. Health Perspect. 2006, 114, 147-152. https://doi.org/10.1289/ehp.7048
  6. Mutter, J.; Naumann, J.; Schneider, R.; Walach, H.; Haley, B. Neuroendocrinol Lett. 2005, 26, 439-446.
  7. Zalups, R. K. Pharmacol Rev. 2000, 52, 113-143.
  8. Onyido, I.; Norris, A. R.; Buncel, E. Chem. Rev. 2004, 104, 5911-5929. https://doi.org/10.1021/cr030443w
  9. Morel, F. M. M.; Kraepiel, A. M. L.; Amyot, M. Annu. Rev. Ecol. Syst. 1998, 29, 543-566. https://doi.org/10.1146/annurev.ecolsys.29.1.543
  10. Matsushita, M.; Meijler, M. M.; Wirsching, P.; Lerner, R. A.; Janda, K. D. Org. Lett. 2005, 7, 4943-4946. https://doi.org/10.1021/ol051919w
  11. Regulatory Impact Analysis of the Clean Air Mercury Rule EPA-452/R-05-003; U.S. Environmental Protection Agency: Research Triangle Park, NC, 2005.
  12. Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J. Angew. Chem. Int. Ed. 2007, 46, 6658-6661. https://doi.org/10.1002/anie.200701785
  13. Renzoni, A.; Zino, F.; Franchi, E. Environ. Res. 1998, 77, 68- 72. https://doi.org/10.1006/enrs.1998.3832
  14. Malm, O. Environ. Res. 1998, 77, 73-78. https://doi.org/10.1006/enrs.1998.3828
  15. Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J Am. Chem. Soc. 2006, 128, 10-11. https://doi.org/10.1021/ja055064u
  16. Wang, J.; Qian, X.; Cui, J. J. Org. Chem. 2006, 71, 4308-4311. https://doi.org/10.1021/jo052642g
  17. Yang, R. H.; Chan, W. H.; Lee, A. W.; Xia, P. F.; Zhang, H. K.; Li, K. J. Am. Chem. Soc. 2003, 125, 2884-2885. https://doi.org/10.1021/ja029253d
  18. Caballero, A.; Martinez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J. J. Am. Chem. Soc. 2005, 127, 15666-15667. https://doi.org/10.1021/ja0545766
  19. Nolan, E. M.; Jaworski, J.; Okamoto, K.; Hayashi, Y.; Sheng, M.; Lippard, S. J. J. Am. Chem. Soc. 2005, 127, 16812-16823. https://doi.org/10.1021/ja052184t
  20. Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272- 2273. https://doi.org/10.1021/ja037604y
  21. He, Q.; Miller, E. W.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 9316-9317. https://doi.org/10.1021/ja063029x
  22. Liu, J.; Lu, Y. J. Am. Chem. Soc. 2005, 127, 12677-12683. https://doi.org/10.1021/ja053567u
  23. Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760-16761. https://doi.org/10.1021/ja054855t
  24. Ono, A.; Togashi, H. Angew. Chem. Int. Ed. 2004, 43, 4300-4302. https://doi.org/10.1002/anie.200454172
  25. Zhao, Y.; Zhong, Z. J. Am. Chem. Soc. 2006, 128, 9988-9989. https://doi.org/10.1021/ja062001i
  26. Chen, X.; Nam, S.-W.; Jou, M. J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Org. Lett. 2008, 10, 5235-5238. https://doi.org/10.1021/ol8022598
  27. Liu, C.-W.; Huang, C.-C.; Chang, H.-T. Anal. Chem. 2009, 81, 2383-2387. https://doi.org/10.1021/ac8022185
  28. Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474-14475. https://doi.org/10.1021/ja066144g
  29. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270-14271. https://doi.org/10.1021/ja037995g
  30. Nolan, E. M.; Racine, M. E.; Lippard, S. J. Inorg. Chem. 2006, 45, 2742-2749. https://doi.org/10.1021/ic052083w
  31. Meng, X.-M.; Liu, L.; Hu, H.-Y.; Zhu, M.-Z.; Wang, M.-X.; Shi, J.; Guo, Q.-X. Tetrahedron Lett. 2006, 47, 7961-7964. https://doi.org/10.1016/j.tetlet.2006.08.127
  32. Wang, J.; Qian, X. Chem. Commun. 2006, 109-111.
  33. Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474-14475. https://doi.org/10.1021/ja066144g
  34. Descalzo, A. B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J. J. Am. Chem. Soc. 2003, 125, 3418-3419. https://doi.org/10.1021/ja0290779
  35. Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K. Org. Lett. 2006, 8, 371-374. https://doi.org/10.1021/ol052282j
  36. Choi, M. J.; Kim, M. Y.; Chang, S.-K. Chem. Commun. 2001, 1664-1665.
  37. Dickerson, T. J.; Reed, N. N.; LaClair, J. J.; Janda, K. D. J. Am. Chem. Soc. 2004, 126, 16582-16586. https://doi.org/10.1021/ja045798r
  38. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270-14271. https://doi.org/10.1021/ja037995g
  39. Matsushita, M.; Meijler, M. M.; Wirsching, P.; Lerner, R. A.; Janda, K. D. Org. Lett. 2005, 7, 4943-4946. https://doi.org/10.1021/ol051919w
  40. Wang, Z.; Zhang, D. Q.; Zhu, D. B. Anal. Chim. Acta. 2005, 549, 10-13. https://doi.org/10.1016/j.aca.2005.06.031
  41. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 5910-5918. https://doi.org/10.1021/ja068879r
  42. Zhang, X. L.; Xiao, Y.; Qian, X. H. Angew. Chem. Int. Ed. 2008, 47, 8025-8029. https://doi.org/10.1002/anie.200803246
  43. Suresh, M.; Mishra, S.; Mishra, S. K.; Suresh, E.; Mandal, A. K.; Shrivastav, A.; Das, A. Org. Lett. 2009, 11, 2740-2743. https://doi.org/10.1021/ol900810q
  44. Kutscheroff, M. G. Chem. Ber. 1909, 42, 2759-2762. https://doi.org/10.1002/cber.190904202197
  45. Budde, W. L.; Dessy, R. E. J. Am. Chem. Soc. 1963, 85, 3964- 3970. https://doi.org/10.1021/ja00907a014
  46. Song, F.; Watanabe, S.; Floreancig, P. E.; Koide, K. J. Am. Chem. Soc. 2008, 130, 16460-16461. https://doi.org/10.1021/ja805678r
  47. Dong, M.; Wang, Y.-W.; Peng, Y. Org. Lett. 2010, 12, 5310-5313. https://doi.org/10.1021/ol1024585
  48. Lee, H. Y.; Jo, J.; Park, H.; Lee, D. Chem. Commun. 2011, 47, 5515-5517. https://doi.org/10.1039/c1cc10974j
  49. Lee, H.; Kim, H.-J. Tetrahedron Lett. 2011, 52, 4775-4778. https://doi.org/10.1016/j.tetlet.2011.07.019
  50. Lee, D.-N.; Kim, G.-J.; Kim, H.-J. Tetrahedron Lett. 2009, 50, 4766-4768. https://doi.org/10.1016/j.tetlet.2009.06.017
  51. Yang, Y.-K.; Lee, S.; Tae, J. Org. Lett. 2009, 11, 5610-5613. https://doi.org/10.1021/ol902325u
  52. Jou, M. J.; Chen, X.; Swamy, K. M. K.; Kim, H. N.; Kim, H.- J.; Lee, S.-g.; Yoon, J. Chem. Commun. 2009, 7218-7220.
  53. Egorova, O. A.; Seo, H.; Chatterjee, A.; Ahn, K. H. Org. Lett. 2010, 12, 401-403. https://doi.org/10.1021/ol902395x
  54. Do, J. H.; Kim, H. N.; Yoon, J.; Kim, J. S.; Kim, H.-J. Org. Lett. 2010, 12, 932-934. https://doi.org/10.1021/ol902860f
  55. Kim, H.-J.; Kim, Y.-H.; Hong, J.-I. Tetrahedron Lett. 2001, 42, 5049-5052. https://doi.org/10.1016/S0040-4039(01)00915-7
  56. Connors, K. A., Binding Constants; Wiley: New York, 1987.

Cited by

  1. -propargylamides vol.16, pp.38, 2018, https://doi.org/10.1039/C8OB01474D
  2. Transition Metal-Mediated Synthesis of Oxazoles vol.89, pp.11, 2011, https://doi.org/10.3987/rev-14-808