DOI QR코드

DOI QR Code

Structure Optimization of Di-ionizable Calixarene Nano-baskets for Competitive Solvent Extraction of Alkali and Alkaline Earth Metals

  • Mokhtari, Bahram (Department of Chemical Engineering, Shahreza Branch, Islamic Azad University) ;
  • Pourabdollah, Kobra (Department of Chemical Engineering, Shahreza Branch, Islamic Azad University)
  • Received : 2011.07.25
  • Accepted : 2011.08.31
  • Published : 2011.11.20

Abstract

The competitive solvent extractions of alkali and alkaline earth metals by di-ionizable calix[4]arene nano-baskets were studied using nine conformers of calix[4]arene nano-baskets. The objective of this work is to assess the variation of macrocycle conformation, orientation and position of pendant moieties upon the extraction parameters (efficiency, selectivity and $pH_{1/2}$) of the complexes. The results revealed that alternation of ring conformation in calixarene scaffold affects the solvent extraction parameters towards alkali and alkaline earth metals, while changing the orientation of pendant moieties from ortho- to para- as well as cis- to trans-analogues depicted no changes in those extraction parameters.

Keywords

References

  1. Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 1. https://doi.org/10.1007/s10847-010-9848-7
  2. Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Coord. Chem. 2011, 64, 743. https://doi.org/10.1080/00958972.2011.555538
  3. Mokhtari, B.; Pourabdollah, K.; Dallali, N. J. Radioanal. Nucl.Chem. 2011, 287, 921. https://doi.org/10.1007/s10967-010-0881-1
  4. Mokhtari, B.; Pourabdollah, K.; Dalali, N. Chromatographia 2011, 73, 829. https://doi.org/10.1007/s10337-011-1954-1
  5. Mokhtari, B.; Pourabdollah, K. Asian J. Chem. 2011, 23, 4717.
  6. Baeyer, A. Chem. Ber. 1872, 5, 280. https://doi.org/10.1002/cber.18720050186
  7. Zinke, A.; Ziegler, E. Chem. Ber. 1944, 77, 264. https://doi.org/10.1002/cber.19440770322
  8. Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905. https://doi.org/10.1021/jo00419a052
  9. Maharaj, F.; Craig, D. C.; Scudder, M. L.; Bishop, R.; Kumar, N. J. Incl. Phenom. Macrocycl. Chem. 2007, 59, 17. https://doi.org/10.1007/s10847-006-9288-6
  10. Yang, Y.; Cao, X.; Surowiec, K.; Bartsch, R. A. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 163.
  11. Atanassova, M.; Lachkova, V.; Vassilev, N.; Varbanov, S.; Dukov, I. J. Incl. Phenom. Macrocycl. Chem. 2007, 58, 173. https://doi.org/10.1007/s10847-006-9140-z
  12. Zhang, D.; Crawford, J. D.; Bartsch, R. A. J. Incl. Phenom. Macrocycl. Chem. 2010, 66, 163. https://doi.org/10.1007/s10847-009-9675-x
  13. Bennouna, L.; Vicens, J.; Asfari, Z.; Yahyaoui, A.; Burgard, M. J. Incl. Phenom. Macrocycl. Chem. 2001, 40, 95. https://doi.org/10.1023/A:1011110827429
  14. Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G. R. Solvent Extraction Principles and Practice; Dekker, M., Ed.; CRC: New York, U.S.A., 2004; p 20.
  15. Ocak, Ü.; Ocak, M.; Surowiec, K.; Bartsch, R. A.; Gorbunova, M. G.; Tu, C.; Surowiec, M. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 131. https://doi.org/10.1007/s10847-008-9497-2
  16. Zhang, D.; Crawford, J. D.; Bartsch, R. A. Tetrahedron 2008, 64, 9843. https://doi.org/10.1016/j.tet.2008.07.115
  17. Tu, C.; Surowiec, K.; Gega, J.; Purkiss, D. W.; Bartsch, R. A. Tetrahedron 2008, 64, 1187. https://doi.org/10.1016/j.tet.2007.11.065
  18. Zhang, D.; Cao, X.; Purkiss D. W.; Bartsch, R. A. Org. Biomol. Chem. 2007, 5, 1251. https://doi.org/10.1039/b700072c
  19. Zhou, H.; Liu, D.; Gega, J.; Surowiec, K.; Purkiss, D. W.; Bartsch, R. A. Org. Biomol. Chem. 2007, 5, 324-332. https://doi.org/10.1039/b611570e
  20. Tu, C.; Surowiec, K.; Bartsch, R. A. Tetrahedron 2007, 63, 4184. https://doi.org/10.1016/j.tet.2007.02.105
  21. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3081. https://doi.org/10.1080/00958972.2011.613462
  22. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3189. https://doi.org/10.1080/00958972.2011.616930
  23. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2011. doi: 10.1007/s10847-011-0052-1.
  24. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2011. doi: 10.1007s10847-011-0062-z. https://doi.org/10.1007s10847-011-0062-z
  25. Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2011. doi: 10.1080/10610278.2011.605452.
  26. Mokhtari, B.; Pourabdollah, K. J. Therm. Anal. Calorim. 2011. doi: 10.1007/s10973-011-2014-7.

Cited by

  1. Solvent extraction of alkali metals by di-ionizable nano-baskets vol.64, pp.23, 2011, https://doi.org/10.1080/00958972.2011.635790
  2. Binding Study of Ionizable Calix[4]-1,3-Crowns-5,6 Nano-baskets by Differential Pulse Voltammetry vol.159, pp.3, 2012, https://doi.org/10.1149/2.048203jes
  3. Application of nano-baskets in preconcentration of tetrahedral oxoanions in the produced water of oil wells vol.24, pp.12, 2012, https://doi.org/10.1080/10610278.2012.732225
  4. Dispersive enhancement in liquid–liquid microextraction by dual supramolecular role of nano-baskets vol.24, pp.4, 2012, https://doi.org/10.1080/10610278.2012.655278
  5. Extraction of alkali metals using emulsion liquid membrane by nano-baskets of calix[4]crown vol.29, pp.12, 2012, https://doi.org/10.1007/s11814-012-0085-1
  6. Inclusion separation of alkali metals in emulsion liquid membranes by nanobaskets of calix[4]crown-3 vol.29, pp.4, 2012, https://doi.org/10.1590/S0104-66322012000400010
  7. Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1509
  8. Metabolic Fingerprints by Nano-baskets of 1,2-Alternate Calixarene and Emulsion Liquid Membranes vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2320
  9. Electrochemical Study of Structural Effects in Complexation of Nano-baskets: Calix[4]-1,2-crown-3, -crown-4, -crown-5, -crown-6 vol.42, pp.8, 2012, https://doi.org/10.1080/15533174.2012.680131
  10. Nano-baskets in Emulsion Liquid Membranes for Selective Extraction of Alkali Metals vol.59, pp.9, 2012, https://doi.org/10.1002/jccs.201100737
  11. Extraction of vanadyl porphyrins in crude oil by inclusion dispersive liquid–liquid microextraction and nano-baskets of calixarene vol.74, pp.1-4, 2012, https://doi.org/10.1007/s10847-011-0099-z
  12. Electrochemical investigation of nano-baskets of calix[4]-1,3-crowns-5,6 complexes vol.76, pp.3-4, 2013, https://doi.org/10.1007/s10847-012-0210-0
  13. Inclusion extraction of alkali metals by emulsion liquid membranes bearing nano-baskets vol.76, pp.3-4, 2013, https://doi.org/10.1007/s10847-012-0212-y
  14. Application of nano-baskets in metabolomics vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0233-6
  15. Separation of Alkali Metals by Emulsion Liquid Membranes Facilitated by Nano-Baskets of Calixarene pp.1520-5754, 2013, https://doi.org/10.1080/01496395.2013.794466
  16. Microextraction of Tetrahedral Oxoanions from Produced Water by Nano-baskets of Calixarene pp.1553-3182, 2013, https://doi.org/10.1080/15533174.2012.762788
  17. RETRACTED ARTICLE: Inclusion of piperidine-modified nano-baskets towards rare earth metals vol.78, pp.1-4, 2014, https://doi.org/10.1007/s10847-013-0312-3
  18. RETRACTED ARTICLE: Application of nano-baskets in polymer inclusion membranes vol.79, pp.1-2, 2014, https://doi.org/10.1007/s10847-013-0320-3
  19. Binding Survey of Ionizable Calix[4]-1,2-crown-3 Nano-baskets by Differential Pulse Voltammetry vol.24, pp.2, 2011, https://doi.org/10.1002/elan.201100584
  20. Investigation of ionizable nano-baskets of calix[4]-1,2-crown-3 by differential pulse voltammetry vol.64, pp.23, 2011, https://doi.org/10.1080/00958972.2011.636040
  21. Extraction of s-block metals by nano-baskets of calix[4]crown-3 vol.90, pp.6, 2011, https://doi.org/10.1139/v2012-020
  22. Voltammetric Study of Nano-baskets of Calix[4]-1,3-crowns-5, -crowns-6 Complexes vol.76, pp.None, 2011, https://doi.org/10.1016/j.electacta.2012.05.028
  23. Application of Nano-Baskets for Extraction of Lanthanides vol.36, pp.12, 2011, https://doi.org/10.3184/174751912x13527973569178
  24. Applications of nano-baskets in drug development: high solubility and low toxicity vol.36, pp.1, 2013, https://doi.org/10.3109/01480545.2011.653490