References
- Jones, G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: New York, 1996; Vol. 5, Chapter 5.05, pp 167-243.
- Gilchrist, T. L. Heterocyclic Chemistry; Longman: London, 1997.
- Deng, X. Q.; Wei, C. X.; Song, M. X.; Chai, K. Y.; Sun, Z. G.; Quan, Z. S. Bull. Korean Chem. Soc. 2011, 31, 447.
- Chen, Y.; Lee, Y. R. Bull. Korean Chem. Soc. 2011, 32, 2485. https://doi.org/10.5012/bkcs.2011.32.7.2485
- Marjani, A. P.; Khalafy, J.; Molla Ebrahimlo, A. R.; Prager, R. H. Bull. Korean Chem. Soc. 2011, 32, 2183. https://doi.org/10.5012/bkcs.2011.32.7.2183
- Samosorn, S.; Bremner, J. B.; Ball, A.; Lewis, K. Bioorg. Med. Chem. 2006, 14, 857. https://doi.org/10.1016/j.bmc.2005.09.019
- Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 6072. https://doi.org/10.1021/ja9703741
- Singh, S.; Kumar, V.; Kumar, A.; Sharma, S.; Dua, P. Bull. Korean Chem. Soc. 2010, 31, 3605. https://doi.org/10.5012/bkcs.2010.31.12.3605
- Aggarwal, A. K.; Jenekhe, S. A. Macromolecules 1991, 24, 6806. https://doi.org/10.1021/ma00025a044
- Friedlander, P. Chem. Ber. 1882, 15, 2572. https://doi.org/10.1002/cber.188201502219
- Lee, W. J.; Chea, J. M.; Jahng, Y. Bull. Korean Chem. Soc. 2011, 30, 3061.
- Cheng, C.-C.; Yan, S.-J. Org. React. 1982, 28, 37.
- SMansake, R. H.; Kulka, M. Org. React. 1953, 7, 59.
- Linderman, R. J.; Kirollos, S. K. Tetrahedron Lett. 1990, 31, 2689. https://doi.org/10.1016/S0040-4039(00)94673-2
- Contelles, H. M.; Mayoral, E.; Samadi, A.; Carreiras, M.; Soriano, E. Chem. Rev. 2009, 109, 2652. https://doi.org/10.1021/cr800482c
- Strekowski, L.; Czamy, A. J. Fluoresc. Chem. 2000, 104, 281. https://doi.org/10.1016/S0022-1139(00)00252-9
- Hu, Y. Z.; Zang, G.; Thummel, R. P. Org. Lett. 2003, 5, 2251. https://doi.org/10.1021/ol034559q
- Arcadi, A.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Synlett. 2003, 203.
- Akbari, J. Heydari, A.; Kalhor, H. R.; Azizian Kohan, S. J. Comb. Chem. 2009, 12, 137.
- Cho, Y. S.; Huh, Y. D. Bull. Korean Chem. Soc. 2009, 30, 1410. https://doi.org/10.5012/bkcs.2009.30.6.1410
- Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125, 2020. https://doi.org/10.1021/ja0211757
- Choudary, B. M.; Kantam, M. L.; Ranganath, K. V. S.; Mahendar, K.; Sreedhar, B. J. Am. Chem. Soc. 2004, 126, 3396. https://doi.org/10.1021/ja038954n
- Cho, Y. S.; Huh, Y. D. Bull. Korean Chem. Soc. 2008, 29, 2525. https://doi.org/10.5012/bkcs.2008.29.12.2525
- Gleiter, H. Nanostructured Mater. 1995, 6, 3. https://doi.org/10.1016/0965-9773(95)00025-9
- Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. https://doi.org/10.1126/science.281.5383.1647
- Prasetyanto, E. A.; Sujandi, Lee, S. C.; Park, S. E. Bull. Korean Chem. Soc 2007, 28, 2359. https://doi.org/10.5012/bkcs.2007.28.12.2359
- Khaleel, A.; Richards, R. M. in Nanoscale Materials in Chemistry; Kladunde, K. J., Ed.; Wiley: New York, 2001; Chapter 4. Page 1- 50.
- Sheykhan, M.; Mamani, L.; Ebrahimi, A.; Heydari, A. J. Mol. Catal. A: Chem. 2011, 335, 253. https://doi.org/10.1016/j.molcata.2010.12.004
- Sadjadi, S.; Shiri, S.; Hekmatshoar, R.; Beheshtiha, Y. S. Monatsh. Chem. 2009, 140, 343.
- Karmakar, B.; Paul, S.; Banerji, J. Arkivoc. 2011, ii, 61.
- Ahmadi, S. J.; Sadjadi, S.; Hosseinpour, M. Monatsh. Chem. 2011, 142, 841.
- Jiang, Z.; Niu, Q.; Dang, W. Nanoscience 2007, 12, 40.
Cited by
- Copper Based Nanoparticles-Catalyzed Organic Transformations vol.17, pp.3-4, 2013, https://doi.org/10.1007/s10563-013-9159-2
- Function of Nanocatalyst in Chemistry of Organic Compounds Revolution: An Overview vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/341015
- Nickel nanoparticles: a highly efficient and retrievable catalyst for the solventless Friedlander annulation of quinolines and their in silico molecular docking studies as histone deacetylase inhibitors vol.5, pp.57, 2015, https://doi.org/10.1039/C5RA06593C
- Imidazole-functionalized magnetic Fe3O4 nanoparticles: an efficient, green, recyclable catalyst for one-pot Friedländer quinoline synthesis vol.42, pp.6, 2016, https://doi.org/10.1007/s11164-015-2411-9
- Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3-dicarboxylates under ligand free conditions vol.4, pp.29, 2011, https://doi.org/10.1039/c3ra47212d
- An environmentally benign, simple and proficient synthesis of quinoline derivatives catalyzed by FeCl3.6H2O as a green and readily available catalyst vol.14, pp.1, 2021, https://doi.org/10.1080/17518253.2020.1869840
- NH 4 CL /Zn powder: An efficient, chemoselective reducing catalyst for the microwave‐assisted synthesis of 2,3‐disubstituted quinolines via tandem Knoevenagel condensati vol.58, pp.2, 2011, https://doi.org/10.1002/jhet.4203