DOI QR코드

DOI QR Code

Bioethanol Production using a Yeast Pichia stipitis from the Hydrolysate of Ulva pertusa Kjellman

효모 Pichia stipitis를 이용한 구멍갈파래 가수분해 추출물로 부터 바이오 에탄올 생산

  • Lee, Ji-Eun (Department of Biotechnology, Chungju National University) ;
  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Kang, Do-Hyung (Korea Ocean Research & Development Institute) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • Received : 2011.09.02
  • Accepted : 2011.10.17
  • Published : 2011.12.01

Abstract

We studied the repeated-batch process for the bioethanol production from the hydrolysate of Ulva pertusa Kjellman using yeast Pichia stipitis, which is able to assimilate C6- and C5-monosaccharides. During 180-hour operations, the repeated-batch process was carried out stably, and the average bioethanol concentration reached 11.9 g/L from about 30 g/L of reducing sugar in the hydrolysate. Meanwhile, the bioethanol yields, based on the reducing sugar and the quantitative TLC analysis, were 0.40 and 0.37, respectively, which corresponded to 78.4% and 72.5% of theoretical value, respectively. Throughout the quantitative process analysis, it was also demonstrated that 39.67 g-bioethanol could be produced from 1 kg of dried Ulva pertusa Kjellman. In this study, we verified that the bioethanol production from the hydrolysate of Ulva pertusa Kjellman was feasible using a yeast Pichia stipitis, particularly during the repeated-batch operation.

6탄당과 5탄당을 이용할 수 있는 효모 Picha stipitis를 이용하여 해조류인 구멍갈파래 가수분해 추출물의 단당류로부터 바이오 에탄올을 생산하는 반복 회분식 공정에 대하여 연구하였다. 이러한 공정이 180시간 까지 반복적으로 이루어질 수 있었으며, 약 30 g/L의 총환원당으로 부터 최고 평균 11.9 g/L의 바이오 에탄올이 생산됨을 확인하였다. 이 때 바이오 에탄올 수율은 0.40 (DNS 방법 기준)과 0.37 (TLC 방법 기준)이었으며, 이는 이론치의 78.4%와 72.5%에 해당하는 바이오 에탄올 수율에 해당한다. 이 결과를 다른 측면에서 분석하면, 본 연구 결과로 얻어진 반복 회분식공정에서 건조 구멍갈파래 1 kg에서 39.67 g의 바이오 에탄올을 생산 할 수 있다는 결론을 얻게 되었다. 본 연구를 통하여 구멍갈파래의 가수분해 추출물로부터 바이오 에탄올을 생산할 수 있다는 것을 실험적으로 증명하였고, 상업적인 대량생산이 가능한 공정기술로서 반복 회분식 방법이 적합하다는 것을 확인할 수 있었다.

Keywords

References

  1. 배태진, 강동수, 최옥수. 2000. 구멍갈파래(Ulva pertusa)로부터 $Dimethyl{\beta}propiothetin$ 최적추출조건. 한국식품영양과학회지. 29:783-789.
  2. 연지현, 서현범, 오성호, 최원석, 강도형, 이현용, 정경환. 2010. 모자반 가수분해물을 이용한 바이오 에탄올 생산. 한국생물공학회지. 25:283-288.
  3. 이성목, 김재혁, 조화영, 주현, 이재화. 2009a. 물리화학적 가수분해에 의한 갈조류 바이오 에탄올 생산. 공업화학. 20:517-521.
  4. 이성목, 최인순, 김성구, 이재화. 2009b. 효소적 가수분해에 의한 갈조류 바이오 에탄올 생산. 한국생물공학회지. 24:483-488.
  5. 한재건, 오성호, 최운용, 권정웅, 서현범, 정경환, 강도형, 이현용. 2010. 고압액화공정을 이용한 구멍갈파래의 발효용 알코올 당화수율 증진. 한국생물공학회지. 25:357-362.
  6. 한재건, 하지혜, 이현용, 최영범, 고정임, 강도형. 2009. 구멍갈파래의 면역활성 증진을 위한 추출방법 비교. 한국식품과학회지. 41:380-385.
  7. Adams, J. M., Gallagher, J. A. and Donnison, I. S. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21:569-574. https://doi.org/10.1007/s10811-008-9384-7
  8. Akakabe, Y., Matsui, K. and Kajiwara, T. 1999. Enantioselective ${\alpha}-hydroperoxylation$ of long-chain fatty acids with crude enzyme of marine green alga Ulva pertusa. Tetrahedron Lett. 40:1137-1140. https://doi.org/10.1016/S0040-4039(98)02547-7
  9. Chaplin, M. F. and Kennedy, J. F. 1986. Carbohydrate analysis; A practical approach, pp. 3. IRL Press, Oxford, UK.
  10. Grootjen, D. R. J., van der Lans, R. G. J. M. and Luyben, K. Ch. A. M. 1990. Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb. Technol. 12:20-23. https://doi.org/10.1016/0141-0229(90)90174-O
  11. Harun, R., Danquah, M. K. and Forde, G. M. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85:199-203.
  12. Horn, S. J., Aasen, I. M. and Ostgaard, K. 2000. Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25:249-254. https://doi.org/10.1038/sj.jim.7000065
  13. Hull, S. R. Yang, B. Y. Venzke, D., Kulhavy, K. and Montgomery, R. 1996. Composition of corn steep water during steeping J. Agric. Food Chem. 44:1857-1863. https://doi.org/10.1021/jf950353v
  14. Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320-326. https://doi.org/10.1016/j.copbio.2006.05.008
  15. Ligthelm, M. E., Prior, B. A. and du Preez, J. C. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28:63-68. https://doi.org/10.1007/BF00250500
  16. Pengzhan, Y., Ning, L., Xiguang, L., Gefei, Z., Quanbin, Z. and Pengcheng, L. 2003a. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol. Res. 48:543-549. https://doi.org/10.1016/S1043-6618(03)00215-9
  17. Pengzhan, Y., Quanbin, Z., Ning, L., Zuhong, X. Yanmei, W. and Li Zhi'en, L. 2003b. Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J. Appl. Phycol. 15:121-127. https://doi.org/10.1023/A:1023802820093
  18. Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X. and Li, Z. 2005a. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int. J. Biol. Macromol. 37:4195-199.
  19. Qi, H., Zhang, Q., Zhao, T., Hu, R., Zhang, K. and Li, Z. 2006. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. Lett. 16:2441-2445. https://doi.org/10.1016/j.bmcl.2006.01.076
  20. Qi, H., Zhao, T., Zhang, Q., Li, Z., Zhao Z. and Xing, R. 2005b. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J. Appl. Phycol. 17:527-534. https://doi.org/10.1007/s10811-005-9003-9
  21. Robyt, J. F. and Mukerjea, R. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251:187-202. https://doi.org/10.1016/0008-6215(94)84285-X
  22. Skoog, K., and Hahn-Hagerdal, B. 1990. Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56:3389-3394.
  23. Watson, N. E., Prior, B. A., du Preez, J. C. and Lategan, P. M. 1984. Oxygen requirements for D-xylose fermentation to ethanol and polyols by Pachysolen tannophilus. Enzyme Microb. Technol. 6:447-450. https://doi.org/10.1016/0141-0229(84)90094-2
  24. Yeon, J.-H., Lee, S.-E., Choi, W. Y., Kang, D. H., Lee, H.-Y and Jung, K.-H. 2011a. Repeated-batch operation of surfaceaerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21:323-331.
  25. Yeon, J.-H., Lee, S.-E., Choi, W. Y., Choi, W.-S., Kim, I.-C., Lee, H.-Y. and Jung, K.-H. 2011b. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21:109-114. https://doi.org/10.4014/jmb.1008.08001

Cited by

  1. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis vol.161, 2014, https://doi.org/10.1016/j.biortech.2014.03.078
  2. Net primary productivity, biofuel production and CO 2 emissions reduction potential of Ulva sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean vol.148, 2017, https://doi.org/10.1016/j.enconman.2017.06.066
  3. Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose vol.135, 2016, https://doi.org/10.1016/j.carbpol.2015.08.048