DOI QR코드

DOI QR Code

Characterization of Sandwiched MIM Capacitors Under DC and AC Stresses: Al2O3-HfO2-Al2O3 Versus SiO2-HfO2-SiO2

Al2O3-HfO2-Al2O3와 SiO2-HfO2-SiO2 샌드위치 구조 MIM 캐패시터의 DC, AC Stress에 따른 특성 분석

  • 곽호영 (충남대학교 전자전파정보통신공학과) ;
  • 권혁민 (충남대학교 전자전파정보통신공학과) ;
  • 권성규 (충남대학교 전자전파정보통신공학과) ;
  • 장재형 (충남대학교 전자전파정보통신공학과) ;
  • 이환희 (충남대학교 전자전파정보통신공학과) ;
  • 이성재 (충남대학교 전자전파정보통신공학과) ;
  • 고성용 ;
  • 이원묵 ;
  • 이희덕 (충남대학교 전자전파정보통신공학과)
  • Received : 2011.11.10
  • Accepted : 2011.11.14
  • Published : 2011.12.01

Abstract

In this paper, reliability of the two sandwiched MIM capacitors of $Al_2O_3-HfO_2-Al_2O_3$ (AHA) and $SiO_2-HfO_2-SiO_2$ (SHS) with hafnium-based dielectrics was analyzed using two kinds of voltage stress; DC and AC voltage stresses. Two MIM capacitors have high capacitance density (8.1 fF/${\mu}m^2$ and 5.2 fF/${\mu}m^2$) over the entire frequency range and low leakage current density of ~1 nA/$cm^2$ at room temperature and 1 V. The charge trapping in the dielectric shows that the relative variation of capacitance (${\Delta}C/C_0$) increases and the variation of voltage linearity (${\alpha}$/${\alpha}_0$) gradually decreases with stress-time under two types of voltage stress. It is also shown that DC voltage stress induced greater variation of capacitance density and voltage linearity than AC voltage stress.

Keywords

References

  1. S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., 24, 387 (2002).
  2. C. T. Black, K. W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I. V. Banich, and K. R. Milkove, IEEE Electron Device Lett., 25, 622 (2004). https://doi.org/10.1109/LED.2004.834637
  3. H. Hu, C. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi, and N. Yakovlev, J. Appl. Phys., 94, 551 (2003). https://doi.org/10.1063/1.1579550
  4. T. Remmel, P. Ramprasad, and J. Walls, Proc. Int. Rel. Phys. Symp., 277 (2003).
  5. X. Yu, C. Zhu, H. Hu, A. Chin, M. F. fi, H. J. Cho, D. L. Kwong, P. D. Foo, and M. B. Yu, IEEE Electron Device Lett., 24, 63 (2003). https://doi.org/10.1109/LED.2002.808159
  6. T. H. Pemg, C. H. Chien, C. W. Chen, P. Lehnen, and C. Y. Chang, Thin Solid Films, 515, 526 (2006). https://doi.org/10.1016/j.tsf.2005.12.288
  7. S. B. Chen, C. H. Lai, Albert Chin, J. C. Hsieh, and J. Liu, IEEE Electron Device Lett., 23, 185 (2002). https://doi.org/10.1109/55.992833
  8. H. M. Kwon, I. S. Han, S. U. Park, J. D. Bok, Y. J. Jung, H. S. Shin, C. Y. Kang, B. H. Lee, R. Jammy, G. W. Lee, and H. D. Lee, Jpn. J. Appl. Phys., 50, 04DD02-1 (2011). https://doi.org/10.1143/JJAP.50.04DD02
  9. M. Y. Yang, D. S. Yu, and A. Chin, Electrochem. Solid State Lett., 151, F162 (2004)
  10. H. Hu, C. Zhu, Y. F. Lu, M. F. Li, M. F. Fi. B. J. Cho, and W. K. Choi, IEEE Electron Device Lett., 23, 514 (2002). https://doi.org/10.1109/LED.2002.802602
  11. S. U. Park, H. K. Kwon, I. S. Han, Y. J. Jung, H. Y. Kwak, W. I. Choi, M. L. Ha, J. I. Lee, C. Y. Kang, B. H. Lee. R. Jammy, and H. D. Lee, Jpn. J. Appl. Phys., 50, 10PB06 (2011). https://doi.org/10.1143/JJAP.50.10PB06
  12. S. H. Wu, C. K. Deng, T. H. Hou, and B. S. Chiou, Jpn. J. Appl. Phys., 49, 04DB16 (2010). https://doi.org/10.1143/JJAP.49.04DB16
  13. K. C. Chinag, C. H. Cheng, K. Y. Jhou, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. MeAlister, and H. L. Hwang, IEEE Electron Device Lett., 28, 694 (2007). https://doi.org/10.1109/LED.2007.900876