Abstract
The Riemann's zeta function $\zeta(s)$ has been known as answer for a number of primes $\pi$(x) less than given number x. In prime number theorem, there are another approximation function $\frac{x}{lnx}$,Li(x), and R(x). The error about $\pi$(x) is R(x) < Li(x) < $\frac{x}{lnx}$. The logarithmic integral function is Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$ ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$. This paper shows that the $\pi$(x) can be represent with finite Li(x), and presents generalized prime counting function $\sqrt{{\alpha}x}{\pm}{\beta}$. Firstly, the $\pi$(x) can be represent to $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$ and $Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})}k\geq2$ such that $0{\leq}t{\leq}2k$. Then, $Li_3$(x) is adjusted by $\pi(x){\simeq}Li_3(x)$ with ${\alpha}$ and error compensation value ${\beta}$. As a results, this paper get the $Li_3(x)=Li_4(x)=\pi(x)$ for $x=10^k$. Then, this paper suggests a generalized function $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$. The $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ function superior than Riemann's zeta function in representation of prime counting.
리만의 제타함수 $\zeta(s)$는 주어진 수 x보다 작은 소수의 개수 $\pi$(x)를 구하는 해답으로 알려져 있으며, 소수정리에서 지금까지 리만의 제타 함수 이외에 $\frac{x}{lnx}$,Li(x)와 R(x)의 근사치 함수가 제안되었다. 여기서 $\pi$(x)와의 오차는 R(x) < Li(x) < $\frac{x}{lnx}$이다. 로그적분함수 Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$, ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$ 이다. 본 논문은 $\pi$(x)는 유한급수��Li(x)로 표현됨을 보이며, 일반화된 $\sqrt{ax}{\pm}{\beta}$의 소수계량함수를 제안한다. 첫 번째로, $\pi$(x)는 $0{\leq}t{\leq}2k$의 유한급수인 $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$와 $Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})\rfloor$, $k\geq2$ 함수로 표현됨을 보였다. $Li_3$(x)는 $\pi(x){\simeq}Li_3(x)$가 되도록 ${\alpha}$ 값을 구하고 오차를 보정하는 ${\beta}$ 값을 갖도록 조정하였다. 이 결과 $x=10^k$에 대해 $Li_3(x)=Li_4(x)=\pi(x)$를 얻었다. 일반화된 함수로 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$를 제안하였다. 제안된 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ 함수는 리만의 제타함수에 비해 소수를 월등히 계량할 수 있었다.