DOI QR코드

DOI QR Code

Expression of OsPTs-OX Transgenic Rice in Phosphate-Deficient Condition

무인산 조건에서 OsPTs 유전자 도입 형질전환벼의 인산흡수 반응

  • Received : 2011.08.02
  • Accepted : 2011.09.07
  • Published : 2011.09.30

Abstract

It needs to develop high phosphate-available rice that is able to minimize environmental pollution caused by phosphate fertilizer. Then we have transformed 4 rice transporter genes, OsPT(Oryza sativa Phosphate Transporter)1, OsPT4, OsPT7 or OsPT8, to rice (Oryza sativa cv. Dongjin) via Agrobacterium-mediated transformation. We tested adaptation in the P-deficient condition of Dongjin (parental) and each transgenic line in the pot and the field conditions. Definite physiological changes have been observed in OsPTs transgenic lines including culm length, root formation and heading date. Phosphate uptake at harvesting stage was about three times higher in OsPT1-OX (overexpression) and OsPT4-OX than in Dongjin (wt) without P application. There are no variations in total phosphate-content of brown rice of OsPT1-OX in spite of high phosphate uptake. Practically the expression of OsPT1 has contributed to stabilize grain production without P fertilization in rice cultivation than Dongjin.

벼에서 인산흡수 관련 유전자를 이용하여 무기양분이 제한된 토양에서도 작물의 생장을 극대화시키는 무기영양 이용능력이 강화된 차세대 작물을 개발하고자 인산흡수력이 강화된 OsPT(Phosphate transporter)1, 4, 7, 8-OX 계통을 세대진전시켜 T5 세대에서 유전자의 안정적 도입을 확인하였다. 형질전환 계통들의 뿌리발달 상황을 조사해 본 결과, T/R율이 모든 형질전환 계통에서 동진벼보다 높은 경향을 보였다. OsPT1-OX 및 OsPT4-OX 계통은 모본인 동진벼에 비해 전반적으로 초장, 간장 및 수장은 짧았으나 OsPT7-OX 및 OsPT8-OX 계통은 주요 농업적 특성이 비슷하였다. 인산 무시용 시 OsPT1, 7, 8-OX 계통들은 출수기가 1~2일 정도 조숙화되었으나 인산흡수량이 과다하였던 OsPT4-OX계통은 오히려 2일 정도 만숙화되어 출수기 반응이 뚜렷하였다. 인산 무시용시 관행시비 대비 쌀수량 감소율은 동진벼가 18%로 컸으나 OsPT1-OX, 7, 8계통들은 각각 10, 15, 9%에 불과하였다. 인산 무시용시 모본인 동진벼에 비해 OsPT1, 4, 7, 8-OX 계통들은 출수기의 식물체 인산흡수량이 각각 104, 128, 26, 14% 증가하였으나 질소함량은 10, 16, 12, 5% 증가에 그쳤다. 동진벼에 비하여 P/N율이 높고 간장이 짧은 OsPT1-OX과 4-OX 계통은 (2N)P시험구에서 간장이 각각 6, 4 cm 회복되었다. OsPTs-OX의 인산함량(%)을 분석한 결과, OsPT4-OX >1-OX >7-OX >8-OX 순으로 나타난 반면, OsPT1-OX이 인산흡수율이 높으면서도 생육의 변화가 적어 개체당 총 인산흡수량(g/개체)은 OsPT1-OX >4-OX >7-OX >8-OX 순으로 OsPT1-OX이 인산흡수증진 신품종으로 가장 유망하였다. OsPT1-OX계통의 부위별 인산흡수량은 줄기와 잎에서 동진벼의 2.4배, 2.2배였으나 현미와 영에서는 차이가 없었다.

Keywords

References

  1. Bosse, D., M. Kock. 1998. Influence of phosphate starvation on phosphohydrolases during development of tomato seedlings. Plant Cell Environ. 21 : 325-332. https://doi.org/10.1046/j.1365-3040.1998.00289.x
  2. Chen, D. H., P. C. Ronald. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter. 17 : 53-57. https://doi.org/10.1023/A:1007585532036
  3. Delhaize, E., D. M. Hebb, P. R. Ryan. 2001. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 125(4) : 2059-2067. https://doi.org/10.1104/pp.125.4.2059
  4. Del Pozo, J. C., I. Allona, V. Rubio, A. Leyva, A. de la Pena, C. Aragoncillo, J. Paz-Ares. 1999. A type 5 acid phosphatase gene from Arabidopsis thalianais induced by phosphate starvation and by some other types of phosphate mobilising/ oxidative stress conditions. Plant J. 19 : 579-589. https://doi.org/10.1046/j.1365-313X.1999.00562.x
  5. Dinkelaker, B., V. Romheld, H. Marschner. 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 12 : 285-292. https://doi.org/10.1111/j.1365-3040.1989.tb01942.x
  6. Duff, S. M. G., S. Gautam, W. C. Plaxton. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plant. 90 : 791-800. https://doi.org/10.1111/j.1399-3054.1994.tb02539.x
  7. Howitt, S. M., M. K. Udvatdi. 2000. Structure function and regulation of ammonium transporters in plants. Biochimica et Biophysica Acta. 1465 : 152-170. https://doi.org/10.1016/S0005-2736(00)00136-X
  8. Leggewie, G., L. Willmitzer, J. W. Riesmeier. 1997. Two cDNAs from potato are able to complement a phosphate uptake- deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell. 9(3) : 381-392. https://doi.org/10.1105/tpc.9.3.381
  9. Liu, H., A. T. Trieu, L. A. Blaylock, M. J. Harrison. 1998. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol. Plant-Microbe Interact. 11(1) : 14-22. https://doi.org/10.1094/MPMI.1998.11.1.14
  10. Liu, J., D. A. Samac, B. Bucciarelli, D. L. Allan, C. P. Vance. 2004. Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J. 41(2) : 257-268. https://doi.org/10.1111/j.1365-313X.2004.02289.x
  11. Lopez-Bucio, J., E. Hernandez-Abreu, L. Sanchez-Calderon, M. F. Nieto-Jacobo, J. Simpson, L. Herrera-Estrella. 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129(1) : 244-256. https://doi.org/10.1104/pp.010934
  12. Marschner, H. 1995. Mineral Nutrition in Higher Plants. San Diego, CA:Academic Press Inc.
  13. Miller, S. S., J. Liu, D. L. Allan, C. J. Menzhuber, M. Fedorova, C. P. Vance. 2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol. 127 : 594-606. https://doi.org/10.1104/pp.010097
  14. Muchhal, U. S., J. M. Pardo, K. G. Raghothama. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93(19) : 10519-10523. https://doi.org/10.1073/pnas.93.19.10519
  15. Raghothama, K. G. 1999. Phosphate acquisition. Annu Rev Plant Physiol. Plant Mol. Biol. 50 : 665-693. https://doi.org/10.1146/annurev.arplant.50.1.665
  16. Rausch, C., M. Bucher. 2002. Molecular mechanisms of phosphate transport in plants. Planta. 216(1) : 23-37. https://doi.org/10.1007/s00425-002-0921-3
  17. Sanchez-Calderon, L., J. Lopez-Bucio, A. Chacon-Lopez, A. Gutierrez-Ortega, E. Hernandez-Abreu, L. Herrera-Estrella. 2006. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol. 140(3) : 879-889. https://doi.org/10.1104/pp.105.073825
  18. Smith, F. W., P. M. Ealing, B. Dong, E. Delhaize. 1997. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 11(1) : 83-92. https://doi.org/10.1046/j.1365-313X.1997.11010083.x
  19. Smith, F. W., A. L. Rae, M. J. Hawkesford. 2000. Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta. 1465 : 236-245. https://doi.org/10.1016/S0005-2736(00)00141-3