장미 교배 효율 증대를 위한 화분 임성 검정

An Increment of Crossing Efficiency with Consideration of Pollen Viability Analysis in Rose

  • Hwang, Yoon Jung (Department of Horticulture, Kyungpook National University) ;
  • Song, Chang Min (Department of Horticulture, Kyungpook National University) ;
  • Kwon, Min Kyung (Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kim, Sung Tae (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Won Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Youn Yol (Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Han, Tae Ho (Division of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University) ;
  • Lim, Ki Byung (Department of Horticulture, Kyungpook National University)
  • 투고 : 2010.05.31
  • 심사 : 2010.07.05
  • 발행 : 2010.09.30

초록

현재 재배되고 있는 장미 재배종은 오랜 기간 동안 종간교잡과 종내교잡을 통해 선발되어 온 것으로서 대부분이 이형잡종의 게놈으로 구성되어 있어 발아율이 저조한 편이다. 따라서, 효율적인 교배를 위해서는 화분의 활력 검정이 선행되어야 한다. 이에 본 연구에서는 염색액과 발아배지를 이용하여 7품종의 화분 임성율과 발아율 검정하고 이들 결과를 토대로 화분의 크기, 배수성 및 교배조합과의 상관관계를 알아보고자 실시하였다. 화분 임성율은 '스칼렛미미'가 82%로 가장 높았으며 '피노키오'가 39%로 가장 낮았다. 발아율 관찰 결과 '스칼렛미미'가 41%로 가장 높았으며 '미니로사'가 1%로 가장 낮았다. 화분의 크기를 관찰한 결과 화분은 큰 화분과 작은 화분으로 구분되었으며 화분의 직경은 각각 $41.3-45.4{\mu}m$$30.7-37.4{\mu}m$로 관찰되었으며 화분의 크기는 10-40% 정도 차이가 있는 것으로 나타났다. 화분의 크기와 염색체 전체 길이의 합을 비교한 결과 염색체 크기와 화분의 크기는 정의 상관관계가 있음을 알 수 있었다. 교배조합 검정 결과 착과율과 발아율은 화분 발아율, 임성률 및 배수성과 상관관계가 있음을 확인하였다.

Current rose cultivars are all composed of heterozygous genome due to long history of out crossing including interspecific hybridization. It has been adapted by artificial selection and crossing by breeders that mainly based on the crossing with fertile pollen derived from inter- or intra-specific hybridization. Pollen viability and germination ability tests provide valuable information for the designing of parentage for more successful breeding efficacy. In this study, we tested the pollen viability and germination ability in seven rose cultivars to find any relationship among several factors including pollen size, ploidy levels, and crossing compatibility. The pollen viability showed wide ranges from 39% 'Pinocchio' as minimum to 82% 'Scarlet Mimi' as maximum, whereas pollen germination rate were from 1% 'Mini Rosa' to 41% 'Scarlet Mimi' as a highest. Pollen size ranged from 41.3 to $45.4{\mu}m$ in large sized pollen and 30.7 to $37.4{\mu}m$ in small sized pollen. The mean diameter of large sized pollen is approximately 10-40% bigger than that of small sized pollen. There are positive relationships among ploidy level, total chromosome length, and pollen size. Crossing list showed that seed setting ratio and seed germination were related to pollen viability, pollen germination, and ploidy level.

키워드

과제정보

연구 과제 주관 기관 : 농촌진흥청

참고문헌

  1. Ackerman, W.L. and K. Kondo. 1980. Pollen size and variability as related to chromosome number and speciation in the genus Camellia. Japan J. Breed. 30:251-259. https://doi.org/10.1270/jsbbs1951.30.251
  2. Alexander, M.P. 1969. Differential staining of aborted and nonaborted pollen. Stain Technology 44:117-122. https://doi.org/10.3109/10520296909063335
  3. Bolat, I. and L. Pirlak. 1999. An investigation on pollen viability, germination and tube growth in some Stone fruits. Tr. J. of Agriculture and Forestry 23:383-388.
  4. Dafni, A. and D. Firmage. 2000. Pollen viability and longevity: Practical, ecological and evolutionary implications. Plant Syst. Evol. 222:113-132. https://doi.org/10.1007/BF00984098
  5. Darlington, C.D. and A.P. Wylie. 1955. Chromosome atlas of flowering plants. 2nd Ed., George Allen and Unwin Ltd., London.
  6. Han, Y.Y. and S.N. Yu. 2002. Difference of intra- and interspecific cross-compatibility of fertilization in several genus Rosa. J. Kor. Soc. Hort. Sci. 43: 326-332.
  7. Jung, S.K. 1996. The present condition of rose cultivars and cultivation. Flower Res. J. pp. 1-15.
  8. Kim, G.J., H.R. Kim, J.H. Lee, G.Y. Gi, J.H. Lee, T.H. Han, and J.K. Choi. 2007. Effective identification of rose pollen fertility using staining methods. Korean J. Plant Res. 20:73-78.
  9. Kelly, J.K., A. Rasch, and S. Kalisz. 2002. A method to estimate pollen viability from pollen size variation. American Journal of Botany 89:1021-1023. https://doi.org/10.3732/ajb.89.6.1021
  10. Knox. R.B., E.G., Williams, and C. Dumas. 1986. Pollen, pistil, and reproductive function in crop plants. Plant Breeding Reviews 4:9-79.
  11. Ma, Y., D.H. Byrne, and J. Chen. 1997a. Amphidiploid induction from diploid rose interspecific hybrids. HortScience 32:292-295.
  12. Ma, Y., M.N. Islam-Faridi, C.F. Crane, Y. Ji, D.M. Stelly, H.J. Price, and D.H. Byrne. 1997b. In situ hybridization of ribosomal DNA to rose chromosomes. The Journal of Heredity 88:158-161. https://doi.org/10.1093/oxfordjournals.jhered.a023078
  13. Marcellan O.N. and E.L. Camadro. 1996. The viability of asparagus pollen after storage at low temperature. Sci. Hort. 67:101-104. https://doi.org/10.1016/S0304-4238(96)00949-1
  14. Ministry of Food, Agriculture, Forestry and Fisheries (MIFAFF). 2008. 2007 The present condition of floriculture cultivation. Seoul.
  15. Rowley, G.D. 1961. Aneuploidy in the genus Rosa. J. Genet. 57:253-268.
  16. Stanley, R.G and H.F. Linskens. 1974. Pollen: biology, biochem istry management. Springer-Verlag, Berlin, Heidelberg, New York.
  17. Stone, J.L., J.D. Thomson, and S.J. Dent-Acosta. 1995. Assessment of pollen viability in hand-pollination experiments: a review. Amer. J. Bot. 82:1186-1197. https://doi.org/10.2307/2446073
  18. Zlesak, D.C. 2006. Rose. p. 695-738. In: Anderson, N.O. (ed), Flower breeding and genetics, Springer, The Netherlands.