DOI QR코드

DOI QR Code

Surface Form Measurement Using Single Shot Off-axis Fizeau Interferometry

  • Abdelsalam, Dahi Ghareab (Division of Mechanical System Engineering, Chonbuk National University) ;
  • Baek, Byung-Joon (Division of Mechanical System Engineering, Chonbuk National University) ;
  • Cho, Yong-Jai (Division of Advanced Technology, Korea Research Institute of Standards and Science) ;
  • Kim, Dae-Suk (Division of Mechanical System Engineering, Chonbuk National University)
  • 투고 : 2010.10.05
  • 심사 : 2010.11.19
  • 발행 : 2010.12.25

초록

This paper describes the surface form measurement of a spherical smooth surface by using single shot off-axis Fizeau interferometry. The demodulated phase map is obtained and unwrapped to remove the $2\pi$ ambiguity. The unwrapped phase map is converted to height and the 3D surface height of the surface object is reconstructed. The results extracted from the single shot off-axis geometry are compared with the results extracted from four-frame phase shifting in-line interferometry, and the results are in excellent agreement.

키워드

참고문헌

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, England, 1980).
  2. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Optics and Lasers in Engineering 45, 304-317 (2007). https://doi.org/10.1016/j.optlaseng.2005.10.012
  3. R. Robinson and G. T. Reid, Interferogram Analysis (Institute of Physics Publishing, Bristol and Philadelphia, USA, 1993).
  4. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982). https://doi.org/10.1364/JOSA.72.000156
  5. D. Kim, S. Kim, H. J. Kong, and Y. Lee, “Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett. 27, 1893-1895 (2002). https://doi.org/10.1364/OL.27.001893
  6. D. Kim and Y. J. Cho, “3-D surface profile measurement using an acousto-optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea 12, 281-287 (2008). https://doi.org/10.3807/JOSK.2008.12.4.281
  7. J. W. Goodman and R. W. Lawrence, “Digital image formation from electrically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). https://doi.org/10.1063/1.1755043
  8. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777-778 (1948). https://doi.org/10.1038/161777a0
  9. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). https://doi.org/10.1364/OL.22.001268
  10. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999). https://doi.org/10.1364/AO.38.004990
  11. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase contrast imaging,” Opt. Lett. 24, 291-293 (1999). https://doi.org/10.1364/OL.24.000291
  12. R. W. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavkii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. 17, 333-334 (1972).
  13. E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569-570 (1965). https://doi.org/10.1364/JOSA.55.000569
  14. D. C. Ghiglia and M. D. Pritt, Two-dimensional Phase Unwrapping: Theory, Algorithm, and Software (Wiley, New York, USA, 1998).
  15. S. B. Howell, Handbook of CCD Astronomy (Cambridge University Press, Cambridge, England, 2006).
  16. D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes at reflection,” Optics and Lasers in Engineering 48, 543-547 (2010). https://doi.org/10.1016/j.optlaseng.2009.12.015
  17. G. H. Spencer and M. V. R. K. Murty, “General ray-tracing procedure,” J. Opt. Soc. Am. 52, 672-678 (1962). https://doi.org/10.1364/JOSA.52.000672
  18. N. Lindlein and J. Schwider, “Local wave fronts at diffractive elements,” J. Opt. Soc. Am. A 10, 2563-2572 (1993). https://doi.org/10.1364/JOSAA.10.002563
  19. N. Lindlein and H. P. Herzig, “Design and modeling of a miniature system containing micro-optics,” Proc. SPIE 4437, 1-13 (2001). https://doi.org/10.1117/12.448143
  20. Y.-Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt. 24, 3049-3052 (1985). https://doi.org/10.1364/AO.24.003049
  21. R. A. Nicolaus, “Precise method to determining systematic errors in phase-shifting interferometry on Fizeau interference,” Appl. Opt. 32, 6380-6386 (1993). https://doi.org/10.1364/AO.32.006380
  22. Guide To the Expression of Uncertainty in Measurement, International Organization for Standardization, ISO, 1995.
  23. E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Comm. 182, 59-69 (2000). https://doi.org/10.1016/S0030-4018(00)00747-1

피인용 문헌

  1. Coherent noise suppression in digital holography based on flat fielding with apodized apertures vol.19, pp.19, 2011, https://doi.org/10.1364/OE.19.017951
  2. Complex object wave direct extraction method in off-axis digital holography vol.21, pp.3, 2013, https://doi.org/10.1364/OE.21.003658
  3. Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry vol.51, pp.20, 2012, https://doi.org/10.1364/AO.51.004891
  4. A comparison of digital holographic microscopy and on-axis phase-shifting interferometry for surface profiling vol.46, pp.10, 2013, https://doi.org/10.1016/j.measurement.2013.07.026
  5. High spatial resolution recording of near-infrared hologram based on photo-induced phase transition of vanadium dioxide film vol.40, pp.7, 2015, https://doi.org/10.1364/OL.40.001595
  6. Precise Test Sieves Calibration Method Based on Off-axis Digital Holography vol.15, pp.2, 2011, https://doi.org/10.3807/JOSK.2011.15.2.146
  7. Real-time dual-wavelength digital holographic microscopy based on polarizing separation vol.285, pp.3, 2012, https://doi.org/10.1016/j.optcom.2011.09.044
  8. 3D Holographic Image Recognition by Using Graphic Processing Unit vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.264
  9. Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling vol.50, pp.33, 2011, https://doi.org/10.1364/AO.50.006153
  10. Non-coherent noise reduction in digital holography based on root mean square technique vol.123, pp.23, 2012, https://doi.org/10.1016/j.ijleo.2011.10.015
  11. Single-shot, dual-wavelength digital holography based on polarizing separation vol.50, pp.19, 2011, https://doi.org/10.1364/AO.50.003360
  12. Simulated Fizeau ring fringes in transmission through spherical and plane reflected surfaces vol.124, pp.1, 2018, https://doi.org/10.1007/s00340-017-6872-y