DOI QR코드

DOI QR Code

Micro-Brillouin Spectroscopy Applied to the Glass Transition of Anti-inflammatory Egonol

  • Kim, Tae-Hyun (Department of Physics, Hallym University) ;
  • Ko, Jae-Hyeon (Department of Physics, Hallym University) ;
  • Kwon, Eun-Mi (Department of Chemistry and Institute of Natural Medicine, Hallym University) ;
  • Jun, Jong-Gab (Department of Chemistry and Institute of Natural Medicine, Hallym University)
  • 투고 : 2010.07.22
  • 심사 : 2010.09.09
  • 발행 : 2010.12.25

초록

The acoustic properties of anti-inflammatory egonol were investigated by using micro-Brillouin scattering spectroscopy, by use of a 6-pass tandem Fabry-Perot interferometer and an optical microscope specially modified for spectroscopic purposes. The measured Brillouin spectrum was composed of a central peak centered at zero and a Brillouin doublet arising from the longitudinal acoustic waves, i.e. propagating density fluctuations. For the first time, the glass transition of egonol was identified to be about $5^{\circ}C$ at which the Brillouin peak position and the half width showed abrupt changes. The substantial damping of acoustic phonons of egonol near the glass transition temperature indicated that the contribution of internal relaxation processes such as small-amplitude librations of side chains to the damping of acoustic phonons may be substantial depending on the internal structure of molecules.

키워드

참고문헌

  1. J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bristol, England, 1989).
  2. G. Hernandez, Fabry-Perot Interferometers (Cambridge University Press, New York, USA, 1986).
  3. J. R. Sandercock, Light Scattering in Solids III, M. Cardona and G. Guntherodt, ed. (Springer, Berlin, Germany, 1982), pp. 173.
  4. J.-H. Ko and S. Kojima, “Angular dispersion-type nonscanning Fabry-Perot interferometer applied to ethanol-water mixture,” J. Opt. Soc. Korea 13, 261-266 (2009). https://doi.org/10.3807/JOSK.2009.13.2.261
  5. J.-H. Ko and S. Kojima, “Comparison of acoustic behaviors between ethanol and partially-deuterated ethanol,” J. Korean Phys. Soc. 56, 409-412 (2010). https://doi.org/10.3938/jkps.56.409
  6. Y. Takagi and K. Kurihara, “Application of a microscope to Brillouin scattering spectroscopy,” Rev. Sci. Instrum. 63, 5552-5555 (1992). https://doi.org/10.1063/1.1143380
  7. D. H. Kim, J.-H. Ko, D. C. Feng, and S. Kojima, “Microheterogeneity and field cooling effects on PZN-4.5%PT single crystals probed by micro-Brillouin scattering,” Appl. Phys. Lett. 87, 072908 (2005). https://doi.org/10.1063/1.2012517
  8. Y. Li, H. S. Lim, S. C. Ng, Z. K. Wang, M. H. Kuok, E. Vekris, V. Kitaev, F. C. Peiris, and G. A. Ozin, “Micro- Brillouin scattering from a single isolated nanosphere,” Appl. Phys. Lett. 88, 023112 (2006). https://doi.org/10.1063/1.2164924
  9. G. P. Johari and D. Pyke, “On the glassy and supercooled liquid states of a common medicament: aspirin,” Phys. Chem. Chem. Phys. 2, 5479-5484 (2000). https://doi.org/10.1039/b007086f
  10. S. P. Das, “Mode-couplling theory and the glass transition in supercooled liquids.” Rev. Mod. Phys. 76, 785-851 (2004). https://doi.org/10.1103/RevModPhys.76.785
  11. J. C. Dyre, “The glass transition and elastic models of glass-forming liquids,” Rev. Mod. Phys. 78, 953-972 (2006). https://doi.org/10.1103/RevModPhys.78.953
  12. R. S. Ward, “Lignans, neolignans and related compounds,” Nat. Prod. Rep. 16, 75-96 (1999). https://doi.org/10.1039/a705992b
  13. M.-R. Kim, H. T. Moon, D. G. Lee, and E.-R. Woo, “A new lignin glycoside from the stem bark of Styrax japonica S. et Z.,” Arch. Pharm. Res. 30, 425-430 (2007). https://doi.org/10.1007/BF02980215
  14. S. Kawai, T. Nakamura, and N. Sugiyama, “Synthesis of egonol,” Ber. dt. Chem. Ges. 72, 1146-1149 (1939). https://doi.org/10.1002/cber.19390720605
  15. M. Takanashi and Y. Takizawa, “New benzofurans related to egonol from immature seeds of Styrax obassia,” Phytochemistry 27, 1224-1226 (1988). https://doi.org/10.1016/0031-9422(88)80314-5
  16. D. H. Choi, J. W. Hwang, H. S. Lee, D. M. Yang, and J.-G. Jun, “Highly effective total synthesis of benzofuran natural product egonol,” Bull. Korean Chem. Soc. 29, 1594-1596 (2008). https://doi.org/10.5012/bkcs.2008.29.8.1594
  17. A. Patkowski, J. Gapinski, G. Meier, and H. Kriegs, “Isotropic Brillouin spectra of liquids having an internal degree of freedom,” J. Chem. Phys. 126, 014508 (2007). https://doi.org/10.1063/1.2426347
  18. J.-H. Ko, K.-S. Lee, Y. Ike, and S. Kojima, “Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering,” Chem. Phys. Lett. 465, 36-39 (2008). https://doi.org/10.1016/j.cplett.2008.09.031
  19. B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, “Brillouin light scattering study of glassy sorbitol,” Phil. Mag. 88, 3939-3946 (2008). https://doi.org/10.1080/14786430802317586
  20. J.-H. Ko and S. Kojima, “Brillouin scattering study on glass-forming ethanol,” J. Non-Crystal. Solids 307-310, 154-160 (2002). https://doi.org/10.1016/S0022-3093(02)01454-0

피인용 문헌

  1. Rapid Access to Benzofuran-Based Natural Products through a Concise Synthetic Strategy vol.2016, pp.12, 2016, https://doi.org/10.1002/ejoc.201600154
  2. Pressure Dependence of Acoustic Properties of Liquid Ethanol by using High-pressure Brillouin Spectroscopy vol.24, pp.5, 2013, https://doi.org/10.3807/KJOP.2013.24.5.279
  3. Pressure dependence of acoustic anomalies of polydimethylsiloxane studied by Brillouin spectroscopy vol.466-467, 2015, https://doi.org/10.1016/j.physb.2015.03.025
  4. Relaxation phenomena in supercooled liquid and glassy acetaminophen studied by dielectric, photon correlation and Brillouin light scattering spectroscopies vol.556, 2013, https://doi.org/10.1016/j.cplett.2012.11.072
  5. Brillouin scattering study on crystalline and glassy states of anti-inflammatory racemic S(+)–R(−) ibuprofen vol.515, pp.4-6, 2011, https://doi.org/10.1016/j.cplett.2011.09.024
  6. Temperature and pressure dependences of acoustic anomalies of PET films studied by using Brillouin spectroscopy vol.66, pp.7, 2015, https://doi.org/10.3938/jkps.66.1120
  7. Isomorphous phase transition of 1,2,4,5-tetrabromobenzene jumping crystals studied by Brillouin light scattering vol.173, 2013, https://doi.org/10.1016/j.ssc.2013.08.021
  8. Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering vol.10, pp.12, 2017, https://doi.org/10.3390/ma10121426
  9. Pressure dependence of acoustic behaviors and refractive index of amorphous Kel F-800 copolymer studied by Brillouin spectroscopy vol.13, pp.8, 2013, https://doi.org/10.1016/j.cap.2013.07.003
  10. Development of a high-pressure brillouin spectrometer and its application to an ethylene-vinyl acetate copolymer vol.60, pp.9, 2012, https://doi.org/10.3938/jkps.60.1419
  11. Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films vol.50, pp.21, 2017, https://doi.org/10.1021/acs.macromol.7b01752
  12. Acoustic behaviour and equation of state of amorphous ethylene–vinyl acetate copolymer studied by means of high-pressure Brillouin scattering spectroscopy vol.87, pp.6, 2014, https://doi.org/10.1080/01411594.2013.859256
  13. Evaluation of the isothermal curing process of UV-cured resin in terms of elasticity studied through micro-Brillouin light scattering vol.17, pp.2, 2016, https://doi.org/10.1080/15980316.2016.1178669