Photo-decomposition Characteristics of 2,4,6-Trinitrotoluene in a UV/$H_2O_2$ Process

2,4,6-Trinitrotoluene (TNT)의 광분해 특성

  • 권범근 (서울대학교 공과대학 화학생물공학부) ;
  • 최원용 (포항공과대학교 환경공학부) ;
  • 윤제용 (서울대학교 공과대학 화학생물공학부)
  • Received : 2010.10.28
  • Accepted : 2010.12.15
  • Published : 2010.12.15

Abstract

The decomposition of 2,4,6-trinitrotoluene (TNT) and the mass balance of nitrogen (N) species as products were investigated in a UV/H2O2system by varying pH, concentrations of $H_2O_2$, and $O_2$. All experiments were conducted in a semi-batch system employing a 50 mL reaction vessel and a coil-type quartz-tube reactor. In contrast with previous studies employing batch mode, TNT decomposition in the semi-batch mode was proportionally enhanced by increasing $H_2O_2$ concentration to 10 mM (0.034%), indicatingthat an inhibitory effect of excess $H_2O_2$on hydroxyl radical (${\cdot}OH$) can be negligible. N compounds are released as $NO_2^-$ in the early stages of the reaction, but $NO_2^-$ is rapidly oxidized to $NO_3^-$ by means of ${\cdot}OH$. $NH_4^+$ was also detected in this study and showed gradually the increase with increasing reaction time. In this study, $NH_4^+$ production can involve the reduction of nitro group of TNT concurrent with the production of $NO_3^-$. Of the N species originating from TNT decomposition, 12 ~ 72% were inorganic forms (i.e. [$NO_3^-$] + [$NO_2^-$] + [$NH_4^+$]). This result suggests that the large remaining N portions indicate that unidentified N compounds can exist.

Keywords

References

  1. Alnaizy, R. and Akgerman, A. (1999) Oxidative treatment of high explosives contaminated wastewater, Water Res., 33, pp. 2021-2030. https://doi.org/10.1016/S0043-1354(98)00424-2
  2. Andrews, C. C. (1980) Photooxidative treatment of TNT contaminated wastewater (Rep. No. WQEC/C-80-137: AD-AQ84684), Weapons Quality Engineering Center, Naval Weapons Support Center, Crane, Ind.
  3. Bielski, B.HJ., Cabelli, D. E., Arudi, R. L and Ross, A. B. (1985) Reactivity of $HO_2/O_{2}^-$ radicals in aqueous solution. J. Phys. Chem. Ref. Data, 14, pp. 1041-1051. https://doi.org/10.1063/1.555739
  4. Blake, D. M., Wolfrun, E., Boulter, J., Prairie, M., Showalter, S., Rodacy, P., Leslie, P. and Stange, B. (1996) Photocatalytic oxidation and reduction chemistry and a new process for treatment of pink water and related contaminated water (Rep. No. NREL/TP-430-21580), National Renewable Energy Laboratory (NREL), Golden, CO.
  5. Bruns-Nagel, D., Scheffer, S., Casper, B., Garn, H., Drzyzga, O., Von L w, E. and Gemsa, D. (1999) Effect of 2, 4, 6-trinitrotoluene and its metabolites on human monocytes, Environ. Sci. Technol., 33, pp. 2566-2570. https://doi.org/10.1021/es9813414
  6. Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B. (1988) In critical review of rate constants for reactions of hydrated electron. hydrogen atoms and hydroxyl radicals $OH/O^-$ in aqueous solution, J. Phys. Chem. Ref. Data, 17.
  7. Chen, W-S and Liang, J-S. (2008) Decomposition of nitrotoluenes from trinitrotoluene manufacturing process by electro-Fenton oxidation, Chemosphere, 72, 601-607. https://doi.org/10.1016/j.chemosphere.2008.03.005
  8. Chen, W-S and Lin, S-Z. (2009) Desctruction of nitrotoluenes in wastewater by electro-Fenton oxidation, Journal of Hazardous Materials, 168, 1562-1568. https://doi.org/10.1016/j.jhazmat.2009.03.048
  9. Chow, Y. L. (1982) Photochemistry of Nitro and Nitroso compounds. In the chemistry of amino, nitroso and nitro compounds and their derivatives, Part 1, pp. 181-290, J. Wiley, New York.
  10. Dillert, R., Fornefett, I., Siebers, U. and Bahnemann, D. J. (1996) Photocatalytic degradation of trinitrotoluene and trinitrobenzene: Influenece of hydrogen peroxide, J. Photochem. Photobiol. A, 94, pp. 231-236. https://doi.org/10.1016/1010-6030(95)04210-5
  11. Errunrich, M. (1999) Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils, Environ. Sci. Technol., 33, pp. 3802-3805. https://doi.org/10.1021/es9903227
  12. Felt, D. R., Larson, S. L. and Hansen, L. D. (2001a) Kinetics of base-catalyzed 2,4,6-trinitrotoluene transformation (ERDC/EL TR-01-17), U.S. Army Engineer Research and Development Center, Vicksburg, MS.
  13. Felt, D. R., Larson, S. L. and Hansen, L. D. (2001b) Molecular weight distribution of the final products of TNT-hydroxide reaction (ERDC/EL TR-01-16), U.S. Army Engineer Research and Development Center, Vicksburg, MS.
  14. Felt, D. R., Larson, S. L. and Valente, E. J. (2002) UV-VIS spectroscopy of 2,4,6-trinitrotoluene-hydroxide reaction, Chemosphere, 49, pp. 287-295. https://doi.org/10.1016/S0045-6535(02)00283-7
  15. Fox, M.A. (1983) Organic heterogeneous photocatalysis: Chemical conversions sensitized by irradiation semiconductors, Accounts Chem. Res., 16, pp. 314-321. https://doi.org/10.1021/ar00093a001
  16. Godejohann, M., AStratov, M.,. Preiss, A. and Levsen, K. (1998) Application of continuous-flow HPLC-proton-nuclear magnetic resonance spectroscopy and HPLC-thermospra-mass spectroscopy for the structural elucidation of phototransformation products of 2,4,6-trinitrotoluene, Anal. Chem., 70, pp. 4104-4110. https://doi.org/10.1021/ac980292a
  17. Hawari, J., Halasz, A., Paquet, L., Zhou, E., Spencer, B., Ampleman, G. and Thiboutot, S. (1998) Characterization of metabolites in the biotransformation of 2,4,6-trinitrotoluene with anaerobic sludge: Role of triaminotoluene, Appl. Environ. Microbiol., 64, pp. 2200-2206.
  18. Hori, Y., Bandoh, A. and Nakatsu, A. (1999) Electrochemical investigation of photocatalytic oxidation of $NO_2^-$ at $TiO_2$ (Anatase) in the presence of $O_2$, J. Electrochem. Soc., 137, pp. 1155-1161.
  19. Hwang, S., Bouwer, E. J., Larson, S. L. and Davis J. L. (2004) Decolorilation of alkaline TNT hydrolysis effluents using UV/$H_2O_2$, J. Hazard. Mater., 2004, pp. 61-67.
  20. Jolas, J.L., Pehkonen, S.O. and Maloney, S.W. (2000) Reduction of 2,4-dinitrotoluene with graphite and titanium mesh cathodes, Water Environ. Res., 72, pp. 179-188. https://doi.org/10.2175/106143000X137266
  21. Kwon, B. G. and Lee, J. H. (2004) A kinetic method for $HO_2{\cdot}/O_2^-$ determination in advanced oxidation processes, Anal. Chem., 76, pp. 6359-6364. https://doi.org/10.1021/ac0493828
  22. Lang, P. S., Ching, W. K., Willberg, D. M. and Hoffmann, M. R. (1998) Oxidative degradation of 2,4,6-trinitroluene by ozone in an electrohydraulic discharge reactor, Environ. Sci. Technol., 32, pp. 3142-3148. https://doi.org/10.1021/es980052c
  23. Lee, B. and Jeong, S-W. (2008) Effects of additives on 2,4,6-trinitrotoluene (TNT) removal and its mineralization in aqueous solution by gamma irradiation, J. Hazard. Mater., 165, pp. 435-440.
  24. Lenke, H., Warrelmann, J., Daun, G., Hund, K., Sieglen, U., Walter, U. and Knackmuss, H-J. (1998) Biological treatment of TNT-contaminated soil. 2. Biological induced imunobilization of the contaminants and full-scale application, Environ. Sci. Technol., 32, pp. 1964-1971. https://doi.org/10.1021/es970950t
  25. Li, Z. M., Comfort, S. D. and Shea, P. J. (1997) Destruction of 2,4,6-trinitrotoluene by Fenton oxidation, J. Environ. Qual., 26, pp. 480-487.
  26. Li, Z. M., Shea, P. J. and Comfort, S. D. (1998) Nitrotoluene destruction by UV-catalyzed Fenton oxidation, Chemosphere, 36, pp. 1849-1865. https://doi.org/10.1016/S0045-6535(97)10073-X
  27. Low, G. K.-C., McEvoy, S. R. and Matthews, R. W. (1991) Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms, Environ. Sci. Technol., 25, pp. 460-467. https://doi.org/10.1021/es00015a013
  28. Lynch, J. C., Myers, K. F., Brannon, J. M. and Delfino, J. J. (2001) Effects of pH and Temperature on the aqueous solubility and dissolution rate of 2,4,6-trinitrotoluene (TNT), Hexahydro-1,3,5-trinitro-1,3,5-triazine-tetrazocine (RDX), and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), J. Chem. Eng. Data, 46, 1549-1555. https://doi.org/10.1021/je0101496
  29. Mahdavi, F., Bruton, T. C. and Li, Y. (1993) Photoinduced reduction of nitro compounds on semiconductor panicle, J. Org. Chem., 58, pp. 744-746. https://doi.org/10.1021/jo00055a033
  30. Matta, R. Hanna, K., Kone, T. and Chiron, S. (2008) Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH, Chem. Eng. J., 144, pp. 453-458. https://doi.org/10.1016/j.cej.2008.07.013
  31. Nahen, M., Bahnemann, D., Dillert, R. and Fels, G. J. (1997) Photocatalytic degradation of trinitrotoluene: Reductive and oxidative pathways, J. Photochem. Photobiol. A, 110, pp. 191-199. https://doi.org/10.1016/S1010-6030(97)00171-8
  32. Noss, C. I. and Chyrek, R. H.(1984) Tertiary treatment of effluent from holston AAP industrial liquid waste treatment facility IV. Ultraviolet radiation and hydrogen peroxide studies: TNT, RDX, HMX, TAX, and SEX (Rep. No. 8308: AD-A141 135), US Army Medical Research and Development Command, Frederick, MD.
  33. Pennington, J.C. and Brannon, J.M. (2002) Environmental fate of explosives, Thermochim. Acta, 384, pp. 163-172. https://doi.org/10.1016/S0040-6031(01)00801-2
  34. Rodgers, J. D. and Bunce, N. J. (2001) Treatment methods for the remediation of nitroaromatic explosives, Water Res., 35, pp. 2101-2111. https://doi.org/10.1016/S0043-1354(00)00505-4
  35. Schmelling, D. C. and Gray, K. A. (1995) Photocatalytic transformation and mineralization of 2,4,6-trinitrotoluene (TNT) in $TiO_2$ slurries, Water Res., 29, pp. 2651-2662. https://doi.org/10.1016/0043-1354(95)00136-9
  36. US Agency for Toxic Substances and Disease Registery (ATSDR), Toxicological Profile for 2,4,6-Trinitrotoluene, http://www.atsdr.cdc.gov/ (1995).
  37. Wang, Z. and Kutal, C. (1995) Photocatalytic mineralization of 2,4,6-trinitrotoluene in aqueous suspension of titanium dioxide, Chemosphere, 30, pp. 1125-1136. https://doi.org/10.1016/0045-6535(95)00011-V
  38. Won, W.D., Disalvo, L.B. and James, N.G. (1976) Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites, Appl. Environ. Microbiol., 31, pp. 576-580.
  39. Zafiriou, O. C. and Bonneau, R. (1987) Wavelength-dependent Quantum yield of OH radical formation from photolysis of nitrite ion in water, Photochem. Photobiol., 45, pp. 723-727. https://doi.org/10.1111/j.1751-1097.1987.tb07873.x