References
- Abbas, H., Paul, D.K., Godbole, P.N. and Nayak, G.C. (1996), "Aircraft crash upon outer containment of nuclear power plant", Nucl. Eng. Des., 160, 13-50. https://doi.org/10.1016/0029-5493(95)01049-1
- Atchley, B.L. and Furr, H.L. (1967), "Strength and energy absorption capabilities of plain concrete under dynamic loads", ACI J., 64, 745-755.
- Bicanic, N. and Zienkiewicz, O.C. (1983), "Constitutive model for concrete under dynamic Loading", Earthq. Eng. Struct. Dyn., 11, 689-711. https://doi.org/10.1002/eqe.4290110508
- Bischoff, P.H. and Perry, S.H. (1991), "Compressive behavior of concrete at high strain rates", Mater. Struct., 24(4), 425-458. https://doi.org/10.1007/BF02472016
- Cadoni, E., Labibes, K., Berra, M., Giangrasso, M. and Albertini, C. (2000), "High strain rate tensile behaviour of concrete", Mag. Concrete Res., 52(5), 365-370. https://doi.org/10.1680/macr.2000.52.5.365
- Cervera, M., Hinton, E. and Bicanic, N. (1987), "Non-linear transient dynamic analysis of three dimensional structures", Numerical Methods and Software for Dynamic Analysis of Plates and Shells, Ed. Lewis, R.W., Pineridge Press, Swansea, U.K.
- Crutzen, Y., Reynue, J. and Vellafane, E. (1981), "Impulsive loading on concrete structures", SMIRT 6, Paper J, 10/1 Paris.
- Dilger, W.H., Koch, R. and Kowalczyk, R. (1984), "Ductility of plane and confined concrete under different strain rate", ACI J., 81(1), 73-81.
- Gong, S., Lu, Y., Tu, Z. and Jin, W. (2009), "Validation study on numerical simulation of RC response to close in blast with a fully coupled model", Struct. Eng. Mech., 32(2), 283-200. https://doi.org/10.12989/sem.2009.32.2.283
- Gupta, A.K. and Maestrini, S.R. (1990), "Tension Stiffness model for reinforced concrete bars", J. Struct. Eng.- ASCE, 116(3), 769-790. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(769)
- Hughes, B.P. and Gregory, R. (1972), "Concrete subjected to high rates of loading in compression", Mag. Concrete Res., 24(78), 25-37. https://doi.org/10.1680/macr.1972.24.78.25
- Hughes, B.P. and Watson, A.J. (1978), "Compressive strength and ultimate strain of concrete under impact loading", Mag. Concrete Res., 30(105), 189-198. https://doi.org/10.1680/macr.1978.30.105.189
- Kukreja, M. (2005), "Damage evaluation of 500 MWe Indian pressurized heavy water reactor nuclear containment for aircraft impact", Nucl. Eng. Des., 235, 1807-1817. https://doi.org/10.1016/j.nucengdes.2005.05.015
- Luccioni, B.M., Ambroshini, R.D. and Danesi, R.F. (2004), "Analysis of building collapse under blast loads", Eng. Struct., 26, 63-71. https://doi.org/10.1016/j.engstruct.2003.08.011
- Mlakar, P.F., Corley, W.G., Sozen, M.A. and Thoronton, C.H. (1999), "The Oklahoma city bombing, analysis of blast damage to Murrah Building", J. Perform. Constr. Fac., 12(3), 113-119.
- Menetrey, P. and Willam, K.J. (1995), "Tri-axial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318.
- Ngo, T. and Mendis, P. (2009), "Modelling the dynamic response and failure modes of reinforced concrete structures subjected to blast and impact loading", Struct. Eng. Mech., 32(2), 269-282. https://doi.org/10.12989/sem.2009.32.2.269
- Nilsson, L. and Glemberg, R. (1981), "A constitutive model for concrete in high rate of loading situations", Proceedings of the IABSE, Colliquim Delft.
- Omika, Y., Fukuzawa, E., Koshika, N., Morikawa, H. and Fukuda, R. (2005), "Structural response of world trade center under aircraft attacks", J. Struct. Eng.-ASCE, 131(1), 6-15. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(6)
- Osteraas, J.D. (2006), "Murrah building bombing revisited : A qualitative assessment of blast damage and collapse patterns", J. Perform. Constr. Fac., 20(4), 330-335. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(330)
- Pandey, A.K., Kumar, R., Paul, D.K. and Trikha, D.N. (2006a), "Nonlinear response of reinforced concrete containment structure under blast loading", Nucl. Eng. Des., 236, 993-1002. https://doi.org/10.1016/j.nucengdes.2005.09.015
- Pandey, A.K., Kumar, R., Paul, D.K. and Trikha, D.N. (2006b), "Strain rate model for dynamic analysis of reinforced concrete structures", J. Struct. Eng.-ASCE, 132(9), 1393-1401. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1393)
- Perzyna, P. (1966), "Fundamental problems in visco-plasticity", Adv. Appl. Mech., 9, 243-77. https://doi.org/10.1016/S0065-2156(08)70009-7
- Rebora, B. and Zimmerman, T. (1976), "Dynamic rupture analysis of reinforced concrete shells", Nucl. Eng. Des., 37, 269-297. https://doi.org/10.1016/0029-5493(76)90021-2
- Ross, C.A., Tedesco, J.W. and Hughes, M.L. (1995), "Effects of strain rate on concrete strength", ACI Mater. J., 92(1), 37-47.
- Scott, B.D., Park, R. and Priestely, M.J.N. (1982), "Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rates", ACI J., 79(1), 13-27.
- Soroushian, P., Choi, K.B. and Alhamad, A. (1986), "Dynamic constitutive behavior of concrete", ACI Struct. J., 83(2), 251-259.
- Xiao, S., Li, H. and Lin, G. (2008), "Dynamic behaviour and constitutive model of concrete at different strain rates", Mag. Concrete Res., 60(4), 271-278. https://doi.org/10.1680/macr.2008.60.4.271
- Yang, L. and Kai, X. (2004), "Modelling of dynamic behaviour of materials under blast loading", Int. J. Solids Struct., 41(1), 131-143. https://doi.org/10.1016/j.ijsolstr.2003.09.019
Cited by
- Damage analysis of arch dam under blast loading vol.12, pp.1, 2013, https://doi.org/10.12989/cac.2013.12.1.065
- Dynamic characteristics of AP1000 shield building for various water levels and air intakes considering fluid-structure interaction vol.70, 2014, https://doi.org/10.1016/j.pnucene.2013.08.002
- Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: A brief review vol.113, pp.8, 2013, https://doi.org/10.1002/qua.24209
- Numerical Modelling of Infilled Clay Brick Masonry under Blast Loading vol.17, pp.4, 2014, https://doi.org/10.1260/1369-4332.17.4.591
- Highly energetic compositions based on functionalized carbon nanomaterials vol.8, pp.9, 2016, https://doi.org/10.1039/C5NR07855E
- Dynamic Analysis of AP1000 Shield Building Considering Fluid and Structure Interaction Effects vol.48, pp.1, 2016, https://doi.org/10.1016/j.net.2015.08.013
- Numerical simulation of reinforced concrete nuclear containment under extreme loads vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.799
- Polypropylene fiber reinforced concrete plates under fluid impact. Part II: modeling and simulation vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.225
- Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2010, https://doi.org/10.12989/sem.2011.38.4.479
- Blast behavior of steel infill panels with various thickness and stiffener arrangement vol.65, pp.5, 2010, https://doi.org/10.12989/sem.2018.65.5.587
- Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading vol.77, pp.4, 2021, https://doi.org/10.12989/sem.2021.77.4.441