References
- Aida, T., Toda, S., Ogawa, N. and Imada, Y. (1992), "Vibration control of beams by beam-type dynamic vibration absorbers", J. Eng. Mech., 118, 248-258. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(248)
- Balkaya, M., Kaya, M.O. and Saglamer, A. (2010), "Free transverse vibrations of an elastically connected simply supported twin pipe system", Struct. Eng. Mech., 34, 549-561. https://doi.org/10.12989/sem.2010.34.5.549
- Burden, R.L. and Faires, J.D. (1989), Numerical Analysis, Pws-Kent Publishing Company, Boston.
- Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B. and Watt, S.M. (1990), Maple Reference Manual, Department of Computer Science, University of Waterloo, Symbolic Computation Group and Waterloo Maple Publishing, Canada.
- Chen, Y.H. and Sheu, J.T. (1994), "Dynamic characteristics of layered beam with flexible core", J. Vib. Acoust., 116, 350-356. https://doi.org/10.1115/1.2930435
- Chonan, S. (1976), "Dynamical behaviours of elastically connected double-beam systems subjected to an impulsive load", T. JSME, 19, 595-603. https://doi.org/10.1299/jsme1958.19.595
- De Rosa, M.A. and Lippiello, M. (2007), "Non-classical boundary conditions and DQM for double-beams", Mech. Res. Commun., 34, 538-544. https://doi.org/10.1016/j.mechrescom.2007.08.003
- Doyle, J.F. (1997), Wave Propagation in Structures, Springer, New York.
- Gopalakrishnan, S., Chakraborty, A. and Mahapatra, D.R. (2008), Spectral Finite Element Method, Springer, London.
- Gurgoze, M., Zeren, S. and Bicak, M.M.A. (2008), "On the consideration of the masses of helical springs in damped combined systems consisting of two continua", Struct. Eng. Mech., 28, 167-188. https://doi.org/10.12989/sem.2008.28.2.167
- Hamada, T.R., Nakayama, H. and Hayashi, K. (1983), "Free and forced vibrations of elastically connected double-beam systems", T. JSME, 26, 1936-1942. https://doi.org/10.1299/jsme1958.26.1936
- Kessel, P.G. (1966), "Resonances excited in an elastically connected double-beam system by a cyclic moving load", J. Acoust. Soc. Am., 40, 684-687. https://doi.org/10.1121/1.1910136
- Kim, N.I. and Kim, M.Y. (2005), "Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force", Struct. Eng. Mech., 19, 73-96. https://doi.org/10.12989/sem.2005.19.1.073
- Lee, U. (2004), Spectral Element Method in Structural Dynamics, Inha University Press, Incheon.
- Leung, A.Y.T. (1993), Dynamic Stiffness and Substructures, Springer, London.
- Oniszczuk, Z. (2000), "Free transverse vibrations of elastically connected simply supported double-beam complex system", J. Sound Vib., 232, 387-403. https://doi.org/10.1006/jsvi.1999.2744
- Oniszczuk, Z. (2003), "Forced transverse vibrations of an elastically connected complex simply supported double-beam system", J. Sound Vib., 264, 273-286. https://doi.org/10.1016/S0022-460X(02)01166-5
- Rao, S.S. (1974), "Natural vibrations of systems of elastically connected Timoshenko beams", J. Acoust. Soc. Am., 55, 1232-1237. https://doi.org/10.1121/1.1914690
- Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2004), "Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor", Smart Mater. Struct., 13, 20-29. https://doi.org/10.1088/0964-1726/13/1/003
- Seelig, J.M. and Hoppmann II, W.H. (1964), "Normal mode vibrations of systems of elastically connected parallel bars", J. Acoust. Soc. Am., 36, 93-99. https://doi.org/10.1121/1.1918919
- Sisemore, C.L. and Darvennes, C.M. (2002), "Transverse vibration of elastic-viscoelastic-elastic sandwich beams: compression-experimental and analytical study", J. Sound Vib., 252, 155-167. https://doi.org/10.1006/jsvi.2001.4038
- Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), "Vibration of a double-beam system", J. Sound Vib., 229, 807-822. https://doi.org/10.1006/jsvi.1999.2528
- Zhang, Y.Q., Lu, Y. and Ma, G.W. (2008), "Effect of compressive axial load on forced transverse vibrations of a double-beam system", Int. J. Mech. Sci., 50, 299-305. https://doi.org/10.1016/j.ijmecsci.2007.06.003
Cited by
- Analytical and numerical method for free vibration of double-axially functionally graded beams vol.152, 2016, https://doi.org/10.1016/j.compstruct.2016.05.003
- Investigation of bar system modal characteristics using Dynamic Stiffness Matrix polynomial approximations vol.180, 2017, https://doi.org/10.1016/j.compstruc.2016.10.015
- Static and dynamic analysis of beam assemblies using a differential system on an oriented graph vol.155, 2015, https://doi.org/10.1016/j.compstruc.2015.02.021
- Vibration analysis of a cracked beam with axial force and crack identification vol.9, pp.4, 2010, https://doi.org/10.12989/sss.2012.9.4.355
- Dynamics of Double-Beam System with Various Symmetric Boundary Conditions Traversed by a Moving Force: Analytical Analyses vol.9, pp.6, 2019, https://doi.org/10.3390/app9061218
- Longitudinal vibration of double nanorod systems using doublet mechanics theory vol.73, pp.1, 2010, https://doi.org/10.12989/sem.2020.73.1.037