DOI QR코드

DOI QR Code

Influence of elastic T-stress on the growth direction of two parallel cracks

  • Li, X.F. (School of Civil Engineering and Architecture, Central South University) ;
  • Tang, B.Q. (School of Mathematics and Computational Science, Changsha University of Science and Technology) ;
  • Peng, X.L. (School of Civil Engineering and Architecture, Central South University) ;
  • Huang, Y. (School of Civil Engineering and Architecture, Central South University)
  • Received : 2007.04.18
  • Accepted : 2009.11.16
  • Published : 2010.02.20

Abstract

This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the ${\sigma}_{\theta}$-criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-stress the crack branching angle is overestimated for small crack inclination angles relative to the largest applied principal stress direction, and underestimated for large crack inclination angles.

Keywords

References

  1. Ayatollahi, M.R., Pavier, M.J. and Smith, D.J. (2002), "Mode I cracks subjected to large T-stresses", Int. J. Fracture, 117, 159-174. https://doi.org/10.1023/A:1020973802643
  2. Betegon, C., Belzunce, F.J. and Rodriguez, C. (1996), "A two parameter fracture criterion for high strength low carbon steel", Acta Mater., 44, 1055-1061. https://doi.org/10.1016/1359-6454(95)00222-7
  3. Chen, Y.Z., Lin, X.Y. and Wang, Z.X. (2009), "Evaluation of the stress intensity factors and the T-stress in periodic crack problem", Int. J. Fracture, 156, 203-216. https://doi.org/10.1007/s10704-009-9360-5
  4. Cotterell, B. and Rice, J.R. (1980), "Slightly curved or kinked cracks", Int. J. Fracture, 16, 155-169. https://doi.org/10.1007/BF00012619
  5. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", ASME Trans. J. Basic Eng., 85, 525-527. https://doi.org/10.1115/1.3656898
  6. Fett, T., Rizzi, G. and Bahr, H.A. (2006), "Green's functions for the T-stress of small kink and fork cracks", Eng. Fract. Mech., 73, 1426-1435. https://doi.org/10.1016/j.engfracmech.2005.12.007
  7. Germanovich, L.N. and Astakhov, D.K. (2004), "Fracture closure in extension and mechanical interaction of parallel joints", J. Geophys. Res., 109, B02208. https://doi.org/10.1029/2002JB002131
  8. Kamaya, M. and Totsuka, N. (2002), "Influence of interaction between multiple cracks on stress corrosion crack propagation", Corros. Sci., 44(10), 2333-2352. https://doi.org/10.1016/S0010-938X(02)00039-2
  9. Lardner, R.W. (1974), Mathematical Theory of Dislocations and Fracture. University of Toronto Press, Toronto.
  10. Li, X.F. (2006), "T-stress near the tips of a cruciform crack with unequal arms", Eng. Fract. Mech., 73, 671-683. https://doi.org/10.1016/j.engfracmech.2005.11.002
  11. Li, X.F., Liu, G.L. and Lee, K.Y. (2009), "Effects of T-stresses on fracture initiation for a closed crack in compression with frictional crack faces", Int. J. Fracture, 160, 19-30. https://doi.org/10.1007/s10704-009-9397-5
  12. Li, X.F. and Xu, L.R. (2007), "T-stresses across static crack kinking", J. Appl. Mech., 74(2), 181-190. https://doi.org/10.1115/1.2188016
  13. Lunn, R.J., Willson, J.P., Shipton, Z.K. and Moir, H. (2008), "Simulating brittle fault growth from linkage of preexisting structures", J. Geophys. Res., 113, B07403. https://doi.org/10.1029/2007JB005388
  14. Melin, S. (2002), "The influence of the T-stress on the directional stability of cracks", Int. J. Fracture, 114, 259-265. https://doi.org/10.1023/A:1015521629898
  15. Molla-Abbasi, K. and Schutte, H. (2008), "On the full set of elastic T-stress terms of internal elliptical cracks under mixed-mode loading condition", Eng. Fract. Mech., 75, 1545-1568. https://doi.org/10.1016/j.engfracmech.2007.06.003
  16. Murakami, Y. (1987), Stress Intensity Factors Handbook, Pergamon Press, World Publishing Corporation, Oxford.
  17. Slakek, J., Sladek, V. and Fedelinski, P. (1997), "Contour integrals for mixed-mode crack analysis: Effect of nonsingular terms", Theor. Appl. Fract. Mec., 27, 115-127. https://doi.org/10.1016/S0167-8442(97)00013-X
  18. Smith, D.J., Ayatollahi, M.R. and Pavier, M.J. (2006), "On the consequences of T-stress in elastic brittle fracture", Proc. R. Soc. A, 462(2072), 2415-2437. https://doi.org/10.1098/rspa.2005.1639
  19. Theocaris, P.S. and Ioakimidis, N.I. (1977), "Numerical integration methods for the solution of singular integral equation", Q. Appl. Math., 15, 173-183.
  20. Wang, X. (2004), "Elastic T-stress solutions for penny-shaped cracks under tension and bending", Eng. Fract. Mech., 71, 2283-2298. https://doi.org/10.1016/j.engfracmech.2004.02.001
  21. Wang, Y.Z., Atkinson, J.D., Akid, R. and Parkins, R.N. (1996), "Crack interaction, coalescence and mixed mode fracture mechanics", Fatigue Fract. Eng. M., 19, 427-439. https://doi.org/10.1111/j.1460-2695.1996.tb00979.x
  22. Williams, J.G. and Ewing, P.D. (1972), "Fracture under complex stress--the angled crack problem", Int. J. Fracture, 8, 441-446.
  23. Williams, M.L. (1957), "On the stress distribution at the base of stationary crack", J. Appl. Mech., 24, 109-114.
  24. Wu, H. and Pollard, D.D. (1995), "An experimentalstudy of the relationship between joint spacing and layer thickness", J. Struct. Geol., 17, 887-905. https://doi.org/10.1016/0191-8141(94)00099-L

Cited by

  1. Green’s function for T-stress of semi-infinite plane crack vol.32, pp.8, 2011, https://doi.org/10.1007/s10483-011-1473-x
  2. A note on stress intensity factors for a crack emanating from a sharp V-notch vol.90, 2012, https://doi.org/10.1016/j.engfracmech.2012.04.023