DOI QR코드

DOI QR Code

Application of Clustering Methods for Interpretation of Petroleum Spectra from Negative-Mode ESI FT-ICR MS

  • Yeo, In-Joon (Kyungpook National University, Department of Chemistry) ;
  • Lee, Jae-Won (Korea University, Department of Statistics) ;
  • Kim, Sung-Hwan (Kyungpook National University, Department of Chemistry)
  • Received : 2010.08.14
  • Accepted : 2010.09.30
  • Published : 2010.11.20

Abstract

This study was performed to develop analytical methods to better understand the properties and reactivity of petroleum, which is a highly complex organic mixture, using high-resolution mass spectrometry and statistical analysis. Ten crude oil samples were analyzed using negative-mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Clustering methods, including principle component analysis (PCA), hierarchical clustering analysis (HCA), and k-means clustering, were used to comparatively interpret the spectra. All the methods were consistent and showed that oxygen and sulfur-containing heteroatom species played important roles in clustering samples or peaks. The oxygen-containing samples had higher acidity than the other samples, and the clustering results were linked to properties of the crude oils. This study demonstrated that clustering methods provide a simple and effective way to interpret complex petroleomic data.

Keywords

References

  1. Comisarow, M. B.; Marshall, A. G. Chem. Phys. Lett. 1974, 26,489-490. https://doi.org/10.1016/0009-2614(74)80397-0
  2. Qian, K.; Rodgers, R. P.; Hendrickson, C. L.; Emmett, M. R.; Marshall,A. G. Energy Fuels 2001, 15(2), 492-498. https://doi.org/10.1021/ef000255y
  3. Hughey, C. A.; Rodgers, R. P.; Marshall, A. G. Anal. Chem. 2002,36(16), 4145-4149.
  4. Hughey, C. A.; Rodgers, R. P.; Marshall, A. G.; Walters, C. C.;Qian, K.; Mankiewicz, P. Org. Geochem. 2004, 35(7), 863-880. https://doi.org/10.1016/j.orggeochem.2004.02.008
  5. Fu, J. M.; Kim, S.; Rodgers, R. P.; Hendrickson, C. L.; Marshall,A. G.; Qian, K. N. Energy Fuels 2006, 20(2), 661-667. https://doi.org/10.1021/ef0503515
  6. Klein, G. C.; Kim, S.; Rodgers, R. P.; Marshall, A. G.; Yen, A.Energy & Fuels 2006, 20(5), 1973-1979. https://doi.org/10.1021/ef0600208
  7. Schaub, T. M.; Jennings, D. W.; Kim, S.; Rodgers, R. P.; Marshall,A. G. Energy Fuels 2007, 21(1), 185-194. https://doi.org/10.1021/ef0601115
  8. Smith, D. F.; Rahimi, P.; Teclemariam, A.; Rodgers, R. P.; Marshall,A. G. Energy Fuels 2008, 22(5), 3118-3125. https://doi.org/10.1021/ef8000357
  9. Smith, D. F.; Rodgers, R. P.; Rahimi, P.; Teclemariam, A.; Marshall,A. G. Energy Fuels 2009, 23(1), 314-319. https://doi.org/10.1021/ef8005564
  10. Headley, J. V.; Peru, K. M.; Barrow, M. P.; Derrick, P. J. Anal. Chem. 2007, 79(16), 6222-6229. https://doi.org/10.1021/ac070905w
  11. Panda, S. K.; Andersson, J. T.; Schrader, W. Angew. Chem. Int. Ed. 2009, 48(10), 1788-1791. https://doi.org/10.1002/anie.200803403
  12. Kim, S.; Rodgers, R. P.; Marshall, A. G. Int. J. of Mass. Spec. 2006,251(2-3), 260-265. https://doi.org/10.1016/j.ijms.2006.02.001
  13. Hur, M.; Yeo, I.; Park, E.; Kim, Y. H.; Yoo, J.; Kim, E.; No, M.-h.;Koh, J.; Kim, S. Anal. Chem. 2009, 82(1), 211-218. https://doi.org/10.1021/ac901748c
  14. ASTM D7455 - 08 Standard practice for sample preparation ofpetroleum and lubricant products for elemental analysis. American Society for Testing and Materials (ASTM) International, West Conshohocken, PA.
  15. ASTM D974 - 08e1 Standard test method for acid and base number by color-indicator titration. American Society for Testing and Materials (ASTM) International, West Conshohocken, PA.
  16. Sohn, I.; Kim, S.; Hwang, C.; Lee, J. W. Comput. Stat. Data Anal. 2008, 52(8), 4104-4115. https://doi.org/10.1016/j.csda.2008.02.006
  17. Team, R. D. C. R Foundation for Statistical Computing, 2009.
  18. Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.;Horsman, D.; Jones, S. J.; Marra, M. A. Genome Res. 2009, 19,1639-1645. https://doi.org/10.1101/gr.092759.109
  19. Tibshirani, R.; Walther, G.; Hastie, T. J. Royal. Stat. Soc.: Series B (Statistical Methodology) 2001, 63(2), 411-423. https://doi.org/10.1111/1467-9868.00293

Cited by

  1. Planar Limit-Assisted Structural Interpretation of Saturates/Aromatics/Resins/Asphaltenes Fractionated Crude Oil Compounds Observed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry vol.83, pp.15, 2011, https://doi.org/10.1021/ac2011685
  2. Application of Saturates, Aromatics, Resins, and Asphaltenes Crude Oil Fractionation for Detailed Chemical Characterization of Heavy Crude Oils by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Equipped with Atmospheric Pressure Photoionization vol.26, pp.5, 2012, https://doi.org/10.1021/ef201312m
  3. Direct Insertion Probe–Mass Spectrometry (DIP–MS) Maps and Multivariate Analysis in the Characterization of Crude Oils vol.27, pp.1, 2013, https://doi.org/10.1021/ef301124s
  4. Characterization of Acid-Soluble Oxidized Asphaltenes by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Insights on Oxycracking Processes and Asphaltene Structural Features vol.30, pp.1, 2016, https://doi.org/10.1021/acs.energyfuels.5b02215
  5. Petroleomic Characterization of Bio-Oil Aging using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.811
  6. Chemometric Exploration of APPI(+)-FT-ICR MS Data Sets for a Comprehensive Study of Aromatic Sulfur Compounds in Gas Oils vol.91, pp.18, 2010, https://doi.org/10.1021/acs.analchem.9b02409