국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design

  • 장미라 (이화여자대학교 임상치의학대학원 임플란트치의학) ;
  • 곽주희 (이화여자대학교 임상치의학대학원 임플란트치의학) ;
  • 김명래 (이화여자대학교 임상치의학대학원 임플란트치의학) ;
  • 박은진 (이화여자대학교 의학전문대학원 치과학교실) ;
  • 박지만 (이화여자대학교 의학전문대학원 치과학교실) ;
  • 김선종 (이화여자대학교 임상치의학대학원 임플란트치의학)
  • Jang, Mi-Ra (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Kwak, Ju-Hee (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Kim, Myung-Rae (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Park, Eun-Jin (Department of Dentistry, School of Medicine, Ewha Womans University) ;
  • Park, Ji-Marn (Department of Dentistry, School of Medicine, Ewha Womans University) ;
  • Kim, Sun-Jong (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Ewha Womans University)
  • 투고 : 2010.03.05
  • 심사 : 2010.06.25
  • 발행 : 2010.06.30

초록

임플란트 보철물에 저작력 등 외부 하중이 작용하면 내부 반응으로 응력이 발생되는데 지지골에 나타난 응력은 골재생 및 흡수 파괴, 임플란트에 나타난 응력은 임플란트 자체의 파절이나 나사의 풀림현상 및 파절, 상부 구조물에 나타난 응력은 보철물의 파절 등을 예견하는 지침이 될 수 있을 것이다. 지대주의 형상과 재질에 따라 연결방법과 보철방법이 달라지고 임플란트 내부의 하중전달 기전이 변하게 되고 이에 따라 악골에 발생하는 응력분포 역시 달라질 수 있다. 본 연구에서는 하악 제 1대구치 부위에 이중나사 구조를 갖고 원추형 내측연결 임플란트 시스템인 GSII$^{(R)}$ (Osstem, Korea)임플란트를 이용해 지대주의 종류를 티타늄 소재의 2-piece Transfer$^{TM}$ abutment (GST), 금합금 소재의 2-piece GoldCast$^{TM}$ abutment(GSG), 외부 연결형태를 가진 3-piece Convertible$^{TM}$ abutment (GSC) 로 분류하여 이에 따른 응력분포 양상을 비교 분석하여 보았다. 결과 하중조건에 관계없이 응력은 주로 지대주와 고정체가 접촉하는 경부에 집중되었다. 또한 하중조건에 관계없이 임플란트의 고정체 상부와 접촉하는 치밀골에 높은 응력이 나타나고 해면골에는 아주 작은 응력이 나타났다. 축하중보다는 중심축을 벗어난 하중조건에서 더 높은 응력이 발생되었고 수직하중보다 경사하중에서 더 높은 응력이 발생되었다. 전체에 걸친 최대응력은 GSG에서는 지대주, 치관 및 고정체에 고르게 분포되었고 GST는 주로 고정체와 지대주 나사에, GSC는 고정체와 지대주에 집중되었다. 세 지대주 간 골내의 최대응력에는 유의한 차이가 없었고 GSG가 전체 구성부의 응력분포에 있어 유리한 것으로 나타났다.

In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

키워드

참고문헌

  1. Sones AD. Complications with osseointegrated implants. J Prosthet Dent 1989;62:582-585.
  2. Kallus T, Bessing C. Loose gold screws frequently occur in full arch fixed prostheses supported by osseointegrated implants for 5years. Int J Oral Maxillofac Implants 19941;9:169-178.
  3. Dan ET, William RL. Tissue-integrated prostheses complication. Int J OralMaxillofac Implants 1992;7: 477-484.
  4. Zarb HA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: The Toronto study. Part 111: Problems and complications and encountered. J Prosthet Dent 1990;64:185-194. https://doi.org/10.1016/0022-3913(90)90177-E
  5. Oh SW, Yang JH. Influence of implant-abutment interface design, implant diameter and prosthetic table width on strength of implant-abutment interface : Three dimensional finite element analysis. J Korean Acad Prosthodont 2003;41:393-404.
  6. Ahn JK, Kay KS, Chung CH. Finite element stress analysis of implant prosthesis with internal connection between the implant and the abutment. J Korean Acad Prosthodont 2004;42:356-372.
  7. Borchers L, Reichart P. Three dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res 1983;62: 155. https://doi.org/10.1177/00220345830620021401
  8. Clelland, N.L. Lee, J.K., Bimbenet, O.C., Gilat, A.. Use of an axisymmetric finite element method to compare maxillary bone variables for a loaded implant. J Prosthodont 1993;2:183-189. https://doi.org/10.1111/j.1532-849X.1993.tb00405.x
  9. Levine RA, et al. A multicenter retrospective analysis of ITI implant system used for single-tooth replacements: Preliminary results at six or more months of loading. Int J Oral Maxillofac Implants 1997;12;237-242.
  10. Jemt T et al. Osseointegrated implants for single tooth replacement, A 1-year report from a multicenter prospective study. Int J Oral Maxillofac Implants 1991;6:29-36.
  11. Jempt T, Pettersson P. A 3-year follow-up study on single implant treatment. J Dent 1993;21:203-298. https://doi.org/10.1016/0300-5712(93)90127-C
  12. Walton JN, Macentee MI. A prospective study on the maintenance of implant prostheses in private practice. Int J Prosthodont 1997;10:453-458.
  13. Levine R, Cleim D, Beagle J, Ganeles J, Johnson P, Sonit G, Keller G. Multicenter Retrospective Analysis of the Solid-screw ITI Implant for Posterior Single-Tooth Replacements. Int J Oral Maxillofac Implants 2002;17:550-556.
  14. Michael R Norton. An in vitro evaluation of the strength of an internal conical interface in implant design. Clin Oral Impl Res 1997;8:290-298. https://doi.org/10.1034/j.1600-0501.1997.080407.x
  15. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108.
  16. Beaty K. The role of screws in implant systems. Int J Oral Maxillofac Implants 1994;9(suppl):52-54.
  17. Binon PP. Evaluation of machining accuracy and consistency of selected implants, standard abutments and laboratory analog. Int J Prosthodont 1995;8:162-178.
  18. Merz BR, hunenbart S, Belser UC. Mechanics of the implant-abutment connection : An 8-degree taper compared to a bitt joint connection. Int J Oral Maxillofac Implants 2000;15:519-526.
  19. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Impl Res 1997;8:290-298. https://doi.org/10.1034/j.1600-0501.1997.080407.x
  20. Norton MR. Assessment of cold welding properties of internal conical interface of two commercially avaliable implant systems. J Prosthet Dent 1999;81: 159-166. https://doi.org/10.1016/S0022-3913(99)70243-X
  21. Norton MR. In vitro evaluation of the strength of the conical implant-to-abutment joint in two commercially avaliable implant systems. J Prosthet Dent 2000;83:567-571. https://doi.org/10.1016/S0022-3913(00)70016-3
  22. Jang JS, Jeong YT, Chung CH. Finite element tress analysis of implant prosthesis of internal connection system according to position and direction of load. J Korean Acad Stomatog Func Occ 2005;21:1-14.
  23. Sutter F. et al. The new concept of ITI hollowcylinder and hollow-screw implants : Part 1. Engineering and design. Int J Oral Maxillofac Implants 1998;3:161-171.
  24. Sutter F. Webber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Perodont Rest Dent 1993;13:409-431.
  25. Kim JH, Jo KH, Lee CH, A study of the stress distribution on the second abutment and supporting tissues in fixed partial denture using three dimensional finite element analysis method. J Korean Acad Prosthodont 2000;38:675-694.
  26. Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants 1993;8:19-31.
  27. Rangert B, Jemt T, Jorneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-247.
  28. Rangert B, Krogh PHJ, Langer B. van Roekel NB. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-334.
  29. Rangert B, Enouard F, Arnoux JP, Sarment DP. Load factor control for implants in posterior partially edentulous segment. Int J Oral Maxillofac Implants 1997;12:360-370.
  30. Beat R. Mechanics of the implant-abutment connection. An 8-degree taper compared to a butt connection. Int J Oral Maxillofac Implants 2000;15: 519-526.
  31. Hoimes DC, Grigsby WR, Goel VK, Keller JC. Comparison of stress transmission in the IMZ implant system with polymethylene or titanium intramobile element: A finite element stress analysis. Int J Oral Maxillofac Implants 1992;7:450-458.