• Title/Summary/Keyword: abutment type

Search Result 238, Processing Time 0.027 seconds

THE EFFECTS OF THE DESIGN OF ABUTMENT SCREW DRIVER ON THE AMOUNT OF TIME FOR INSERTION OF SCREW DRIVER INTO ABUTMENT SCREW HEAD (임플랜트 지대주 나사와 드라이버의 설계가 보철물 장착 및 철거 시간에 미치는 영향에 관한 연구)

  • Kim Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.258-263
    • /
    • 2005
  • Statement of problem. Implant screw loosening has been remained a problem in implant prosthodontics. The time needed to insert screw driver into abutment screw head should be shortened for the purpose of decreasing the chair time. Purpose. The purpose of this study was to investigate the effects of the design of abutment screw driver on the amount of time for insertion of screw driver into abutment screw head. Material and methods. Hexagonal and rectangular types of abutment screw drivers were used. The original abutment screw drivers were modified by grinding acute angle of the screw driver tip (modified drivers). Group 1 : hexagonal type abutment screw and original driver Group 2 : hexagonal type abutment screw and modified driver Group 3 : rectangular type abutment screw and original driver Group 4 : rectangular type abutment screw and modified driver UCLA lab analogues were located in acrylic resin block. The angulations of them were 0 and 20 degrees. The times needed for insertion were measured. Group 1 and 3 were used as controls. Results. 1. Group 2 showed shorter insertion time than group 1, regardless of implant angulations (p<.05). 2. Group 4 showed shorter insertion time than group 3, regardless of implant angulations (p<.05). Conclusion. Modified abutment screw drivers required less amount of time to insert screw driver into abutment screw head. Modification of abutment screw driver was beneficial.

Evaluation of abutment types on highway in terms on driving comfort

  • Nam, Moon S.;Park, Min-Cheol;Do, Jong-Nam
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.43-61
    • /
    • 2017
  • The inverted T-type abutments are generally used in highway bridges constructed in Korea. This type of abutment is used because it has greater stability, with more pile foundations embedded in the bedrock, while simultaneously providing support for lateral earth pressure and vertical loads of superstructures. However, the cross section of inverted T-type abutments is large compared with the piers, which makes them more expensive. In addition, a differential settlement between the abutment and embankment, as well as the expansion joints, causes driving discomfort. This study evaluated the driving comfort of several types of abutments to improve driving comfort on the abutment. To achieve this objective, a traditional T-type abutment and three types of candidate abutments, namely, mechanically stabilized earth wall (MSEW) abutment supported by a shallow foundation (called "true MSEW abutment"), MSEW abutment supported by piles (called "mixed MSEW abutment"), and pile bent and integral abutment with MSEW (called "MIP abutment"), were selected to consider their design and economic feasibility. Finite element analysis was performed using the design section of the candidate abutments. Subsequently, the settlements of each candidate abutment, approach slabs, and paved surfaces of the bridges were reviewed. Finally, the driving comfort on each candidate abutment was evaluated using a vehicle dynamic simulation. The true MSEW abutment demonstrated the most excellent driving comfort. However, this abutment can cause problems with respect to serviceability and maintenance due to excessive settlements. After our overall review, we determined that the mixed MSEW and the MIP abutments are the most appropriate abutment types to improve driving comfort by taking the highway conditions in Korea into consideration.

Study of screw loosening in cementation type implant abutment

  • Hwang, Bo-Yeon;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.6
    • /
    • pp.765-781
    • /
    • 2000
  • The purpose of this study was to compare the screw loosening characteristics of three avail-able cementation type abutments: one-piece cementation type abutment; two-piece cementation type abutment using titanium abutment screw; two-piece cementation type abutment using gold abutment screw. Two implant supported three-unit superstructures were fabricated using a pair of 3 kinds of abutments for each experimental model. Cyclic loading was applied on the specimen, and made to stop when the superstructure showed movement over threshold range. The loaded cycle was counted until the machine stopped. Frequency analysis was done to measure the change of natural frequency before and after the application of cyclic load and to find the effect of screw loosening on the change of natural frequency. The specimen assembly was modeled to perform the finite element analysis to see the distribution of the stress induced by the application of preload over the screw joint and to compare the pattern of the distribution of stress induced by the external force with the change of the preload condition. The following results were obtained: 1. The failure loading cycle of two-piece cementation type abutment using gold screw was significantly greater than those of the other groups. 2. One-piece cementation type abutment applied to multi-unit restoration case did not show greater resistance to screw loosening compared to two-piece cementation type abutments. 3. Frequency analysis showed decrease in natural frequency when screw loosening occured.

  • PDF

A STUDY ON THE MECHANICAL BEHAVIORS OF ABUTMENT TEETH AND SUPPORTING TISSUE OF THE TELESCOPE DENTURE BY THE FINITE ELEMENT METHOD (유한요소법(有限要素法)에 의(依)한 Telescope Denture의 지대치(支臺齒) 및 지지조직(支持組織)의 역학적(力學的) 반응(反應)에 관(關)한 연구(硏究))

  • Kim, Moon-Ki;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.109-122
    • /
    • 1984
  • The purpose of this study was to analyze the magnitude and mode of the stress distribution induced in the supporting alveolar bone and periodontal ligament and, to determine the displacement of abutment teeth and telescope denture base by applying chewing force to the telescope denture quantitatively and qualitatively. Two finite element models of telescope denture that were restored the missing mandibular second molar with two abutment teeth which were constructed. In two different models, parallel and tapering type telescope crowns were constructed. These finite element models of two cases used for these experiment were a two-dimensional mesiodistal section of the mandibular second bicuspid and first molar. Chewing force of 25Kg that was devided in the ratio of 45/155 (29%) in bicuspid and 55/155 (35.5%) in molars was applied to telescope denture and abutment teeth respectively. The displacement of the telescope denture base and abutment teeth and the stress distribution in the periodontal ligament and alveolar bone were analized to investigate the influence of chewing force acting on the telescope denture and abutment teeth. The results were as follows: 1. Abutment teeth displaced mesially and the magnitude of displacement of abutment teeth in vertical direction were more than that of horizontal direction in two cases. The displacement of abutment teeth on the telescope denture treated with tapering type telescope crown were less than that of the parallel type crown. 2. The displacement of the telescope denture base that were treated with parallel type telescope crown were less than that of treated with tapering type telescope crown. 3. The stress induced in the alveolar bone and periodontal ligament on abutment teeth that treated with parallel type telescope crown were more than that of treated with tapering type telescope crown and more stress induced in the alveolar bone than in the periodontal ligament. 4. In the telescope denture, the magnitude of displacement of abutment teeth and stress induced in the periodontal ligament and alveolar bone were within physiologic limit.

  • PDF

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

Development of a Sealing-Type Abutment for Implant and the Performance Evaluation via Structural Analysis (임플란트용 실링 어버트먼트의 개발 및 구조해석을 통한 성능분석)

  • Kim, Jeong Min;Hong, Dae Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.769-775
    • /
    • 2016
  • Currently, dental implants are widely used as artificial teeth due to their good chewing performance and long life cycle. Generally, a dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, a gap is often generated at the interfacial surface between the abutment and the fixture, and it results in some deterioration such as loosening of the fastening screw, dental retraction and fixture fracture. To enhance the sealing performance for coping with such problems, this study proposes a new sealing-type abutment having a number of grooves along the conical surface circumference, and it carries out finite element analysis in consideration of the external chewing force and pretension between the abutment and the fixture. The result shows that the proposed sealing-type abutment shows an enhanced sealing performance in terms of the contact pressure in comparison with a conventional abutment.

Comparison of implant component fractures in external and internal type: A 12-year retrospective study

  • Yi, Yuseung;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Shin-Jae;Heo, Seong-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • PURPOSE. The aim of this study was to compare the fracture of implant component behavior of external and internal type of implants to suggest directions for successful implant treatment. MATERIALS AND METHODS. Data were collected from the clinical records of all patients who received WARANTEC implants at Seoul National University Dental Hospital from February 2002 to January 2014 for 12 years. Total number of implants was 1,289 and an average of 3.2 implants was installed per patient. Information about abutment connection type, implant locations, platform sizes was collected with presence of implant component fractures and their managements. SPSS statistics software (version 24.0, IBM) was used for the statistical analysis. RESULTS. Overall fracture was significantly more frequent in internal type. The most frequently fractured component was abutment in internal type implants, and screw fracture occurred most frequently in external type. Analyzing by fractured components, screw fracture was the most frequent in the maxillary anterior region and the most abutment fracture occurred in the maxillary posterior region and screw fractures occurred more frequently in NP (narrow platform) and abutment fractures occurred more frequently in RP (regular platform). CONCLUSION. In external type, screw fracture occurred most frequently, especially in the maxillary anterior region, and in internal type, abutment fracture occurred frequently in the posterior region. placement of an external type implant rather than an internal type is recommended for the posterior region where abutment fractures frequently occur.

Assessment of Stability of Railway Abutment Using Geosynthetics

  • Kim, Ja-Yeon;Kim, Ji-Hwan;Cho, Kook-Hwan
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • An approach section on an abutment is located between the soil embankment and the structure, which may cause an uneven surface due to different settlement between the abutment and the soil embankment. This study proposes a new type of wall which separates the abutment from the backfill material using mechanically stabilized wall. A new type of keystone which incorporates geotube and wire mesh is proposed and evaluated. Numerical analyses were performed to investigate the applicability of the proposed keystone type, which incorporates Geosynthetic. The maximum horizontal displacements along GRS wall faces, settlements at the top of pavement and track bed, and tensile forces applied on geotextiles under traffic loads were investigated. The results of the numerical analysis showed that the proposed wall can be used for highway and high-speed railway abutment.