Measurement and Evaluation of Scatter Fractions for Digital Radiography with a Beam-Stop Array

Beam-Stop Array를 이용한 DR에서의 Scatter Fraction 측정 및 효용성 평가

  • Choi, Yu-Na (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Cho, Hyo-Min (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Kim, Yi-Seul (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • An, Su-Jung (Department of Radiological Science, College of Health Science, Yonsei University) ;
  • Kim, Hee-Joung (Department of Radiological Science, College of Health Science, Yonsei University)
  • Received : 2009.11.03
  • Accepted : 2009.12.17
  • Published : 2010.03.31

Abstract

Scatter radiation considerably affects radiographic image quality by reducing image contrast and contributing to a non-uniform background. Images containing a large portion of scatter radiation may result in an incorrect diagnosis. In the past few years, many efforts have been made to reduce the effects of scatter radiation on radiographic images. The purpose of this study is to accurately measure scatter fractions and evaluate the effectiveness of beam-stop arrays. To measure scatter fraction accurately, a beam-stop array and the SFC (Scatter Fraction Calculator) program were developed. Images were obtained using the beam-stop array for both an anti-scatter technique with an anti-scatter grid and an air gap technique. The scatter fractions of the images were measured using the SFC program. Scatter fractions obtained with an anti-scatter grid were evaluated and compared to scatter fractions obtained without an anti-scatter grid. Scatter fractions were also quantitatively measured and evaluated with an air gap technique. The effectiveness of the beam-stop array was demonstrated by quantifying scatter fractions under various conditions. The results showed that a beam-stop array and the SFC program can be used to accurately measure scatter fractions in radiographic images and can be applied for both developing scatter correction methods as well as systems.

X-선 영상 촬영 시 피사체에 조사되는 X-선은 피사체 내부에서 필연적으로 산란을 일으킨다. 산란선은 영상시스템에 도달하여 영상의 대조도를 저하시키고 전체 농도(Background)를 불균일하게 만든다. 현재 학계의 연구 동향은 산란선에 의한 영상의 화질 저하를 방지하기 위한 방법 고안에 초점을 두고 있다. 본 연구의 목적은 영상에서의 scatter fraction을 정확하게 측정하여 영상시스템의 개선에 기여하고 대조도에 영향을 미치는 인자의 정량적 평가를 최적화하기 위함에 있다. Scatter fraction을 정확하게 측정하기 위하여 beam stop array를 제작하였다. 제작한 beam stop array를 이용하여 영상을 획득하고, 영상의 각 부위에서의 scatter fracton 측정을 자동화하기 위해 MATLAB을 이용한 프로그램(SFC: Scatter Fraction Calculator)을 개발하였다. 그리드 유 무와 air gap 효과에 따른 scatter fracton의 비교를 통하여 beam stop array와 SFC 프로그램의 효용성을 평가하였다. 그리드가 있을 경우의 scatter fraction이 그리드가 없는 경우에서 보다 낮은 값으로 측정되었으며 air gap이 증가함에 따라 scatter fracton이 감소함으로써 효용성을 입증했다. Beam stop array와 SFC 프로그램은 입증된 효용성을 기반으로 임상에서 흉부뿐 아니라 인체의 여러 부위에 이를 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Kwon DG, Kwon DC, Kim HJ, et al: Medical Imaging Informatics. 1, Chungu, 2008, Seoul, pp. 123-143
  2. Aichinger H, Dierker J, Joite-Barfu $\beta$S, et al: Radiation exposure and image quality in X-ray diagnostic. Radiology 1:45-56 (2003)
  3. Samei E, Lo JY, Yoshizizymi TT, et al: Comparative scatter and dose performance of slot-scan and full-field digital chest radiography Systems. Radiology 235:940-949 (2005) https://doi.org/10.1148/radiol.2353040516
  4. Floyd CE, Baker JA, Lo JY, Ravin CE: Posterior beamstop method for scatter fraction measurement in digital radiography. Investigate Radiology 27:119-123 (1992) https://doi.org/10.1097/00004424-199202000-00004
  5. Tang CM, Stier E, Fischer K, Guckel H: Anti-scattering X-ray grid. Microsystem Technologies 4:187-192 (1998) https://doi.org/10.1007/s005420050128
  6. Sorenson JA, Floach J: Scatter rejection by air-gaps: an empirical model. Medical Physics 1:308-316 (1985)
  7. Floyd CE, Lo JY, Chotas HG, Ravin CE: Quantitative scatter measurement in digital radiography using a photostimulable phosphor imaging system. Medical Physics 18:408-413 (1991) https://doi.org/10.1118/1.596687
  8. Ertan F, Mackenzie A, Urbanczyk HJ, Ranger NT, Samei E: Use of effective detective quantum efficiency to optimize radiographic exposures for chest imaging with computed radiography. The International Society for Optical Engineering, Bellingham, 2009, pp. 153-163
  9. Samei E, Ranger NT, MacKenzie AM, et al: Detector or system? Extending the concept of detective quantum efficiency to characterize the performance of digital radiographic imaging systems. Radiology 249:926-937 (2008) https://doi.org/10.1148/radiol.2492071734
  10. Chotas HG, Van Metter RL, Johnson GA, Ravin CE: Small object contrast in AMBER and conventional chest radiography. Radiology 180:853-859 (1991)
  11. Jordan LK, Floyd CE, Lo JY, Ravinl CE: Measurement of scatter fractions in erect posteroanterior and lateral chest radiography. Radiology 188:215-218 (1993)
  12. Baydush AH, Ghem WC, Floyd CE: Anthropomorphic versus geometric chest phantoms: a comparison of scatter properties. Medical Physics 27:894-897 (2000) https://doi.org/10.1118/1.598954
  13. Samei E, Saunders RS, Lo JY, et al: Fundamental imaging characteristics of a slot-scan digital chest radiographic system. Medical Physics 31:2687-2698 (2004) https://doi.org/10.1118/1.1783531