A Study on Dose Response of MAGAT (Methacrylic Acid, Gelatin Gel and THPC) Polymer Gel Dosimeter Using X-ray CT Scanner

X-ray CT Scanner를 이용한 MAGAT (Methacrylic Acid, Gelatin Gel and THPC) 중합체 겔 선량계의 선량 반응성 연구

  • Jung, Jae-Yong (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea) ;
  • Lee, Choong-Il (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea) ;
  • Min, Jeong-Hwan (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea) ;
  • Kim, Yon-Lae (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea) ;
  • Lee, Seong-Yong (Department of Radiation Oncology, Jeil Hospital) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea)
  • 정재용 (가톨릭대학교 의과대학 의공학교실) ;
  • 이충일 (가톨릭대학교 의과대학 의공학교실) ;
  • 민정환 (가톨릭대학교 의과대학 의공학교실) ;
  • 김연래 (가톨릭대학교 의과대학 의공학교실) ;
  • 이성용 (제일병원 방사선종양학과) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Received : 2009.08.29
  • Accepted : 2010.03.26
  • Published : 2010.03.31

Abstract

In this study, we evaluated the dose response of MAGAT (Methacrylic Acid Gelatin gel and THPC) normoxic polymer gel dosimeters based on the X-ray CT scanner. To perform this study, we determined the proper ratio of the gel composition and acquired X-ray scan parameters. MAGAT gel dosimeters were manufactured using MAA (MethacrylicAcid) and gelatin of various concentration, irradiated up to 20 Gy. We obtained the 20 CT images from the irradiated gel dosimeters by using on a Phillips Brilliance Big Bore CT scanner with the various scan parameters. This CT images were used to determine the $N_{CT}$-dose response, dose sensitivity and dose resolution As an amount of MAA and gelatin were increase, the slope and intercept were increase in each MAGAT gel dosimeter with various concentration of the $N_{CT}$-dose response curve. The dose sensitivity was $0.38{\pm}0.08$ to $0.859{\pm}0.1$ and increased were amount of the MAA was increased or the gelatin was decreased. However, the change of gelatin concentration was very small compare to MAA. The Dose resolution ($D_{\Delta}^{95%}$) varies considerably from 2.6 to 6 Gy, dependent on dose resolution and CT image noise. The slope and dose sensitivity was almost ident verywith the variation of the tube voltage, tube current and slice thickness in the dose response curve, but the noise (standard deviation of averamalg CT number) was decreased when the tube voltage, tube current and slice thickness are increase. The optimal MAGAT polymer gel dosimeter based on the CT were evaluated to determine the CT imaging scan parameters of the maximum tube voltage, tube current and slice thickness (commonly used in clinical) using the composition ratio of a 9% MAA, 8% gelatin and 83% water. This study could get proper composition ratio and scan parameter evaluating dose response of MAGAT normoxic polymer gel dosimeter using CT scanner.

CT 촬영 장치를 기반으로 한 MAGAT (Methacrylic Acid, Gelatin gel And THPC) 정상 산소 중합체 겔 선량계의 화합물 조성비와 CT 영상 스캔 인자의 변화에 따른 선량 반응성을 평가하였다. 다양한 농도의 메타크릴산(MAA, MethAcrylic Acid)과 젤라틴을 조성하여 MAGAT 선량계를 제작하고 20 Gy까지의 방사선을 조사하였다. 조사된 겔 선량계는 CT 촬영 장치(Brilliance Big bore scanner, Phillps, Netherlands)를 이용하여 다양한 스캔 인자(관전압, 관전류, 단면두께)로 같은 위치에서 20회까지의 CT 영상을 획득하였다. 획득된 영상으로 $N_{CT}$-선량 반응곡선($N_{CT}$-dose response), 선량 감도(dose sensitivity), 선량 분해능(dose resolution)을 측정, 평가하였다. 각 조성비 별 MAGAT 선량계의 $N_{CT}$-선량 반응곡선에서 메타크릴산과 젤라틴의 양이 증가함에 따라 기울기와 절편이 증가하였다. 선량 감도는 $0.338{\pm}0.08$에서 $0.859{\pm}0.1$까지 나타났고 메타크릴산이 증가, 젤라틴이 감소할수록 증가하였으나 그 변화는 메타크릴산 농도의 증가에 따라 감도가 증가되는 것에 비해 아주 작은 변화를 보였다. 선량 분해능은 약 2.6에서 6 Gy까지 다양하게 나타났으며 감도와 영상 내의 노이즈에 의해 큰 변화를 보였다. 영상 스캔 인자의 변화에 대한 반응곡선은 관전압, 관전류, 단면두께의 변화에 따른 곡선의 기울기와 감도는 큰 변화를 보이지 않았으나 영상 내의 노이즈(평균 CT number의 표준편차)는 위의 3개의 인자가 증가할수록 감소함을 보였다. 본 연구는 CT 촬영장치를 이용한 MAGAT 중합체 겔의 선량 반응성을 평가하여 적정한 조성비와 스캔 인자를 얻을 수 있었으며 CT를 기반으로 한 3차원 선량계를 간단하고 효율적으로 임상에 적용할 수 있을 것으로 사료된다.

Keywords

References

  1. Papadakis A, Maris TG, Zacharopoulou F, Pappas E, Zacharakis G, Damilakis J: An evaluation of the dosimetric performance characteristics of N-vinylpyrrolidone-based polymer gels. Phys Med Biol 52:5069-5083 (2007) https://doi.org/10.1088/0031-9155/52/16/024
  2. Day MJ, Stein G: Chemical effects of ionizing radiation in some gels. Nature 166:146-147 (1950) https://doi.org/10.1038/166146a0
  3. Andrews HL, Murphy RE, Le Brun EJ: Gel dosimeter for depth dose measurements. Rev Sci Instrum 28:329-332 (1957) https://doi.org/10.1063/1.1715877
  4. Gore JC, Kang YS, Schulz RJ: Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 29:1189-1197 (1984) https://doi.org/10.1088/0031-9155/29/10/002
  5. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ: NMR relaxation enhancement in gels polymerized and cross- linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253-258 (1993) https://doi.org/10.1016/0730-725X(93)90030-H
  6. Maryanski MJ, Schulz RJ, Ibbott GS, et al: Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437-1455 (1994) https://doi.org/10.1088/0031-9155/39/9/010
  7. Hilts M, Audet C, Duzenli C, Jirasek: A Polymer gel dosimetry using x-ray computed tomography:a feasibility study. Phys Med Biol 45:559-2571 (2000) https://doi.org/10.1088/0031-9155/45/2/501
  8. Mather ML, Whittaker AK, Baldock C: Ultrasound evaluation of polymer gel dosimeters. Phys Med Biol 47:1449-1458 (2002) https://doi.org/10.1088/0031-9155/47/9/302
  9. Fong PM, Keil DC, Does MD, Gore JC: Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46:3105-3113 (2001) https://doi.org/10.1088/0031-9155/46/12/303
  10. Deene Y De, Hurley C, Venning A, et al: A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441-3463 (2002) https://doi.org/10.1088/0031-9155/47/19/301
  11. Bayreder C, Georg D, Moser E, Berg A: Basic investigations on the performance of a normoxic polymer gel with tetrakis-hydro-mythyl- phosphonium chloride as an oxygen and dose rate dependence. Med Phys 33:2506-2518 (2006) https://doi.org/10.1118/1.2208741
  12. 오영택, 강해진, 김미화 등: 중합체 겔과 자기공명영상을 이용한 3차원 선량분포 측정. 대한방사선종양학회 20:264-273 (1991)
  13. 강해진, 조삼주, 정은기 등: 방사선 근접치료에 있어서 핵자기 공명영상을 이용한 3차원 방사선 선량분포도의 가시화를 위한 polymer 젤의 이용. 의학물리 9:207-215 (1998)
  14. Cho SJ, Shin DH, Huh HD, et al: Development of a Novel Normoxic Polymer Gel Dosimeter (TENOMAG). J Korean Phys Soc 51:1798-1804 (2007) https://doi.org/10.3938/jkps.51.1798
  15. Baldock C, Lepage M, Back SAJ, et al: Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449-460 (2001) https://doi.org/10.1088/0031-9155/46/2/312
  16. Hilts M, Jirasek A, Duzenli C: Technical considerations for implementation of x-ray CT polymer gel dosimetry. Phys Med Biol 50:1727-1745 (2005) https://doi.org/10.1088/0031-9155/50/8/008
  17. Hurley C, Venning A, Baldock C: A study of normoxic polymer gel dosimeter comprising methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT). Appl Radiat Isotopes 63:443-456 (2005) https://doi.org/10.1016/j.apradiso.2005.03.014
  18. International Organization for Standardization (ISO): Guide to the Expression of Uncertainty in Measurement (1995)
  19. Baldock C, Murry P, Kron T: Uncertainty analysis in polymer gel dosimetry. Phys Med Biol 44:N243-N246 (1999) https://doi.org/10.1088/0031-9155/44/11/402
  20. Brindha S, Venning A, Hill B, Baldock C: Experimental study of attenuation properties of normoxic polymer gel dosimeters. Phys Med Biol 49:N353-N361 (2004) https://doi.org/10.1088/0031-9155/49/20/N01