Acquisition of Monochromatic X-ray Using Multilayer Mirror

다층박막 거울을 이용한 단색 엑스선 획득

  • Chon, Kwon-Su (Department of Radiological Science, Daegu Catholic University)
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2010.07.24
  • Accepted : 2010.09.06
  • Published : 2010.09.30

Abstract

A hard X-ray microscope system for obtaining images of nano-spatial resolution has been widely studied and requires monochromatic X-ray. A multilayer mirror of 84% reflectivity was designed to acquire tungsten characteristic X-ray of 8.4 keV from the white beam generated from an X-ray tube, and the C/W multilayer mirror of $50{\times}50\;mm$ size and 5.65 nm d-spacing was fabricated by the ion-beam sputtering system. The C/W multilayer had a uniformity of 99.5%, and the structure of the multilayer mirror was verified by a TEM image. The obtainable x-ray reflectivity for the C/W multilayer mirror at 8.4 keV was estimated from measuring the X-ray reflectivity using the copper characteristic X-ray of 8.05 keV. Monochromatic X-ray of 8.4 keV was generated by combining a X-ray tube, and the reflectivity and monochromaticity were 77.1% and 0.21 keV, respectively. Monochromatic X-ray generated from the combination of an X-ray tube and an C/W multilayer mirror has enough potential to use X-ray source for hard X-ray microscope system of laboratory size. If the C/W multilayer mirror of d-spacing of a few nanometers can be fabricated, monochromatic X-ray corresponded to 17.5 keV, molybdenum characteristic X-ray, can be obtained and applied to mammography in the medical application.

나노 공간분해능을 갖는 영상을 얻기 위한 경엑스선 현미경 시스템에서는 단색 엑스선이 요구된다. 엑스선관에서 발생되는 화이트 빔으로부터 8.4 keV의 텅스텐 $L_{\alpha}$ 특성방사선을 84% 이상 반사시킬 수 있는 5.65 nm의 단위막 두께를 가지는 C/W 다층박막 거울을 설계하였고, 이온빔 스파터링 장치를 이용하여 $50{\times}50\;mm$ 크기로 제작하였다. 제작된 C/W 다층박막 거울은 99.5% 이상의 균일도(Uniformity)를 가지며, TEM 사진을 이용해 그 구조를 확인하였다. 8.05 keV의 구리 특성방사선을 광원으로 하는 엑스선 반사율 측정 장치를 이용한 다층박막 거울의 반사율을 측정함으로써 C/W 다층박막 거울의 8.4 keV에서의 반사율을 예상할 수 있었다. 제작된 C/W 다층박막 거울과 엑스선관을 이용하여 8.4 keV의 특성방사선을 획득함으로써 단색 엑스선을 획득하였다. 이때의 반사율은 77.1%였고, 단색 엑스선의 반치폭은 0.21 keV이었다. 엑스선관에서 높은 효율로 단색 엑스선을 획득할 수 있어 실험실 규모의 경엑스선 현미경 장치의 광원으로써 사용될 수 있는 가능성을 확인하였고, 다층박막 거울의 단위막 두께를 수 나노미터로 제작한다면 17.5 keV의 몰리브덴 특성방사선에 해당하는 단색 엑스선을 얻어 유방촬영에도 적용할 수 있을 것이다.

Keywords

References

  1. David C, Nolting F, Pfeiffer F, Quitmann C, Stampanoni: 9th International Conference on X-Ray Microscopy, Journal of Physics Conference Series, 186, 2009
  2. Kim KW, Kwon Y, Nam KY et al.: Compact soft x-ray transmission microscopy with sub-50 nm spatial resolution, Physics in Medicine and Biology, 51, N99-N107, 2006 https://doi.org/10.1088/0031-9155/51/6/N01
  3. Larabell CA, Le Gros MA: X-ray Tomography Generates 3-D Reconstructions of Yeast, Saccharomyces cerevisiae, at 60-nm Resolution, Molecular Biology of the Cell, 15(3), 956-962, 2004
  4. Kirz J, Jacobsen C, Howells M: Soft X-ray microscopes and their biological applications, Quarterly Reviews of Biophysics, 28(1), 33-130, 1995 https://doi.org/10.1017/S0033583500003139
  5. Choa W, Harteneck BH, Liddle JA, Anderson EH, Attwood DT: Soft X-ray Microscopy at Spatial Resolution Better than 15 nm, Nature, 435, 1210-1213, 2005 https://doi.org/10.1038/nature03719
  6. Chen YT, Lo TN, Chu YS et al.; Full-field hard x-ray microscopy below 30 nm: a challenging nanofabrication achievement, Nanotechnology, 19, 395302, 2008 https://doi.org/10.1088/0957-4484/19/39/395302
  7. Tkachuk A, Duewer F, Cui H, Feser M, Wang S, Yun W: X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source, Zeitschrift Kristallographie, 222, 650-655, 2007 https://doi.org/10.1524/zkri.2007.222.11.650
  8. Bushberg JT, Seibert JA, Leidhold Jr. EM, Boone JM: The essential physics of medical imaging, 2nd ed., Lippincott Williams & Wilkins, Philadelphia, 2001
  9. Millar JJ, Barnea Z: A simple x-ray crystal monochromator, Journal of Physics E: Scientific Instrument, 3, 570-571, 1970 https://doi.org/10.1088/0022-3735/3/7/431
  10. Carroll FE: Tunable Monochromatic X Rays: A New Paradigm in Medicine, American Journal of Roentgenology, 179, 583-590, 2002 https://doi.org/10.2214/ajr.179.3.1790583
  11. Spillar E: Soft X-ray Optics, SPIE Optical Engineering Press, Bellingham, 1994
  12. Barbee Jr. TW: Multilayers for x-ray optics, Optical Engineering, 25(8), 898-915, 1986
  13. Batterman BW, Cole H: Dynamical Diffraction of X-ray by Perfect Crystal, Review of Modern Physics, 36, 681-717, 1964 https://doi.org/10.1103/RevModPhys.36.681
  14. Chon KS, Namba Y, Yoon KH: Wolter type I X-ray focusing mirror using multilayer coatings, Applied Optics, 45(9), 4609-4616, 2006 https://doi.org/10.1364/AO.45.004609
  15. Windt DL, Donguy S, Seely JF, et al.: EUV multilayers for solar physics, Proceedings of SPIE, 5168, 1-11, 2004
  16. Tawara Y. Yamashita Y, Kunieda H et al.; Development of multilayer suppermirror for hard x-ray telescopes, Proc. SPIE, 3444, 569-575, 1998
  17. Chon KS, Yoon KH: Interdiffusion Region in a Tungsten-Carbon Multilayer Coating of Small d-spacing, Journal of the Korean Physics Society, 54(1), 23-28, 2009 https://doi.org/10.3938/jkps.54.23