초록
순차식 연산은 겐첸이 자연연역을 1934년 대칭적 버전으로 재구성한 것으로서, 여기에서 그는 '주정리' 를 소개한다. 이 논문에서 우리는 절단의 유용성에도 불구하고 증명이론에서 왜 절단정리가 이토록 중요한 위상을 차지하는지 검토할 것이다. 이어서 커리-하우어드 대응의 역동적 측면, 즉 절단 제거와 단순히 유형화된 람다-연산에서 ${\beta}$-환원의 대응이 연구될 것이다. 이러한 대응의 중요성은 프로그램의 세계와 수학 증명의 세계를 마주보게 함으로써 프로그램의 정확성을 보증해준다는 데에 있다.
Sequent Calculus is a symmetrical version of the Natural Deduction which Gentzen restructured in 1934, where he presents 'Hauptsatz'. In this thesis, we will examine why the Cut-Elimination Theorem has such an important status in Proof Theory despite of the efficiency of the Cut Rule. Subsequently, the dynamic side of Curry-Howard correspondence which interprets the system of Natural Deduction as 'Simply typed $\lambda$-calculus', so to speak the correspondence of Cut-Elimination and $\beta$-reduction in $\lambda$-calculus, will also be studied. The importance of this correspondence lies in matching the world of program and the world of mathematical proof. Also it guarantees the accuracy of program.