DOI QR코드

DOI QR Code

Facies Analysis of the Early Mesozoic Hajo Formation in the Chungnam Basin, Boryeong, Korea

보령지역 충남 분지 중생대 초기 하조층의 퇴적상 분석

  • Lee, Sin-Woo (Department of Geology and Earth Environmental Sciences, College of Natural Sciences, Chungnam National University) ;
  • Chung, Gong-Soo (Department of Geology and Earth Environmental Sciences, College of Natural Sciences, Chungnam National University)
  • 이신우 (충남대학교 자연과학대학 지질환경과학과) ;
  • 정공수 (충남대학교 자연과학대학 지질환경과학과)
  • Received : 2010.01.14
  • Accepted : 2010.02.15
  • Published : 2010.02.26

Abstract

Facies analysis of the Late Triassic Hajo Formation, the lowest stratigraphic unit in the Chungnam Basin, shows that the lower part is composed mainly of breccias or conglomerates; the middle part, conglomerates; and the upper part, conglomerates and sandstones. The formation consists of 13 facies, which include horizontally stratified clastsupported conglomerate, clast-supported massive breccia, matrix-supported massive breccia or conglomerate, matrixsupported graded conglomerate, massive pebbly sandstone, horizontally laminated sandstone, massive sandstone, graded sandstone, inversely graded sandstone, planar cross-bedded sandstone, trough cross-bedded sandstone, low angle crossbedded sandstone, and massive mudstone. These are grouped into 4 facies associations (FA). FA I consisted of clastsupported and matrix-supported massive breccias presumably deposited in the talus or upper fan delta environment. FA II consists of matrix-supported massive conglomerate and horizontally stratified clast-supported conglomerate of cobble size and it seems to have been deposited in the upper fan delta environment. FAIII consisted of matrix-supported massive conglomerate of pebble size, horizontally laminated sandstone and massive sandstone may have been deposited in the middle fan delta environment. FAIV consists of massive pebbly sandstone, horizontally laminated sandstone and massive sandstone and presumably was deposited in the lower fan delta environment. In general the Hajo Formation is interpreted to have been deposited at the talus/upper fan delta environment in early stage; it might have been deposited in the alternating environments of upper and middle fan delta in middle stage; and it seems to have been deposited in alternating environments of middle and lower fan delta in late stage.

충남 보령 지역 트라이아스기 후기 하조층은 충남분지의 최하위층으로서 하부는 주로 각력암이나 역암, 중부는 역암, 상부는 역암과 사암이 호층을 이루고 있다. 하조층은 입자지지 수평층리 역암, 입자지지 균질 각력암, 기질지지 균질 역암, 기질지지 점이층리 역암, 역질 사암, 평행 엽층리 사암, 균질 사암, 정상 점이층리 사암, 역전점이층리 사암, 판상 사층리 사암, 곡상 사층리 사암, 저경사 사층리 사암 그리고 이암의 13개의 암상으로 구성되고 이들은 4개의 상조합을 이룬다. 상조합 I은 테일러스나 상부 선상지 삼각주에서 퇴적된 것으로 보이는 입자지지 및 기질지지 균질 각력암으로 구성되어 있다. 상조합 II는 기질지지 균질 역암과 수평층리 입자지지 역암으로 구성되고 상부선상지 삼각주에서 퇴적된 것으로 보인다. 상조합 III은 기질지지 균질 역암, 평행엽층리 사암 및 균질 사암으로 구성되고 중부선상지 삼각주에서 퇴적된 것으로 보인다. 상조합 IV는 균질 역질 사암, 수평엽층리 사암과 균질 사암으로 구성되고 하부선상지 삼각주에서 퇴적된 것으로 보인다. 전체적으로 보아 하조층은 초기는 테일러스와 상부 선상지 삼각주 환경에서 퇴적되고, 중기는 상부 선상지 삼각주와 중부 선상지 삼각주가 교호한 환경에서 퇴적되었으며, 말기에는 중부 선상지 삼각주와 하부 선상지 삼각주가 교호하는 환경에서 퇴적된 것으로 해석된다.

Keywords

References

  1. 김정환, 기원서, 김일석, 1989, 문경탄전 북부지역의 지질구조. 지질학회지, 25, 72-81.
  2. 김정환, 김형식, 나기창, 박용안, 박창업, 양승영, 오민수, 원종관, 윤선, 이동영, 이종혁, 이찬진, 조성권, 진명식, 최덕근, 최현일, 1999, 한국의 지질. 대한지질학회, 서울, 802 p.
  3. 김정환, 이제용, 남길현, 1992, 단양탄전, 영춘지역의 지질구조. 광상지질, 25, 175-190.
  4. 서해길, 김동숙, 이창범, 배두종, 조민조, 1982, 석탄자원조사보고서, 충남탄전 II. 한국동력자원연구소, 서울, 39 p.
  5. 양승영, 1999, 충남탄전 지역의 대동호 퇴적분지. 대한지질학회 편저, 1999, 한국의 지질. 시그마프레스, 서울, 218-222.
  6. 에가와 코우스케, 이용일, 2006, 오천 지역과 오서산 지역의 남포층군 층서: 부정합에 대한 조계리층 역암의 중요성. 지질학회지, 42, 635-643.
  7. 이병주, 김복철, 2003, 백악기 공주분지의 지질 및 지질구조 특성 연구. 지질학회지, 39, 161-170.
  8. 전희영, 2004, 중생대 식물화석(하부중생대를 중심으로). 한국고생물학회지, 365-397.
  9. 최현일, 서해길, 김동숙, 1987, 충남탄전 서부지역 대동지층의 퇴적환경 및 분지 발달, 석탄자원조사연구(IV). 한국동력자원연구소, 서울, 9-55.
  10. Alexander, J. and Gawthorpe, R.P., 1993, The complex nature of Jurassic multistorey, alluvial sandstone body, Whitby, North Yorkshire. In North, C.P. and Prosser, D.J. (eds.), Characterization of fluvial and aeolian reservoirs. Geological Society Special Publication, 73, 123-142.
  11. Allen, J.R.L., 1984, Parallel lamination developed from upper-stage plane beds: A model based on the larger coherent structures of the turbulent boundary layer. Sedimentary Geology, 39, 227-242. https://doi.org/10.1016/0037-0738(84)90052-6
  12. Almeida, R.P., Janaikian, L., Fragoso-Cesar, A.R.S., and Marconato, A., 2009, Evolution of a rift basin dominated by subaerial deposits: The Guaritas Rift, Early Cambrian, Southern Brazil. Sedimentary Geology, 217, 30-51. https://doi.org/10.1016/j.sedgeo.2009.01.010
  13. Cantalamessa, G. and Delma C.D., 2004, Sequence response to syndepositional regional uplift: Insights from high-resolution sequence stratigraphy of late Early Pleistoncene strata, Periadriatic Basin, central Italy. Sedimentary Geology, 164, 283-309. https://doi.org/10.1016/j.sedgeo.2003.11.003
  14. Celma, C.D. and Cantalamessa, G., 2007, Sedimentology and high-frequency sequence stratigraphy of a forearc extensional basin: The Miocene Caleta Herradura Formation, Mejillones Peninsula, northern Chile. Sedimentary Geology, 198, 29-52. https://doi.org/10.1016/j.sedgeo.2006.11.003
  15. Chun, S.S. and Chough, S.K., 1995, The Cretaceous Uhangari Formation, SW Korea: Lacustrin magin facies. Sedimentology, 42, 293-322. https://doi.org/10.1111/j.1365-3091.1995.tb02104.x
  16. Ciftci, N.B. and Bozkurt, E., 2009, Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216, 49-79. https://doi.org/10.1016/j.sedgeo.2009.01.004
  17. Cole, R.B. and Stanley, R.G., 1995, Middle Tertiary extension recorded by lacustrine fan-delta deposits, Plush Ranch Basin, western Transverse Ranges, California. Journal of Sedimentary Research, B65, 223-235.
  18. Collinson, J.D., 1996, Alluvial sediments. In Reading, H.G. (ed.), Sdeimentary Environments: Processes, Facies and Stratigraphy. Blackwell Scientific Publication, London, UK, 37-82.
  19. Deynoux, M., Ciner, A., Monod, O., Karabiyikoglu, M., Manatschal, G., and Tuzcu, S., 2005, Facies zrchitecture and depositional evolution of alluvial fan to fandelta complexes in the tectonically active Miocene Koprucay Basin, Isparta Angle, Turkey. Sedimentary Geology, 173, 315-343. https://doi.org/10.1016/j.sedgeo.2003.12.013
  20. Hofmann, A., Dirks, P.H.G.M., and Jelsma, H.A., 2001, Late Archaean foreland basin deposits, Belingwe greenstone belt, Zimbabwe. Sedimentary Geology, 141-142, 131-168. https://doi.org/10.1016/S0037-0738(01)00072-0
  21. Horton, B.K. and Schmitt, J.G., 1996, Sedimentology of a lacustrine fan-delta system, Miocene Horse Camp Formation, Nevada, USA. Sedimentology, 43, 133-155. https://doi.org/10.1111/j.1365-3091.1996.tb01464.x
  22. Hwang, I.G. and Chough, S.K., 1990, The Miocene Chunbuk Formation, southeastern Korea: Marine Gilbert-type fan-delta system. In Coella, A. and Prior, D.B. (eds.), Coarse-grained deltas. International Assoiciation of Sedmentologists Special Publication, 10, Blackwell Scientific Publication, London, UK, 235-254.
  23. Jeon, H.J., Cho, M.S., Kim, H.C., Horie, K., and Hidaka, H., 2005, U-Pb zircon geochronology of Early Jurassic Daedong Supergroup, South Korea: Tectonic implications. 60th Annual Meeting of the Geological society of Korea (Abstracts), Gyeongsang National University, Jinju, October 28-29, p 9.
  24. Kim, J.H., 2001, New fossil plants from the Nampo Group (Lower Mesozoic), Korea. Geosciences Journal, 5, 173-180. https://doi.org/10.1007/BF02910423
  25. Kim, J.H. and Kimura, T., 1987, Fossil plants from the Baegunsa Formation, Nampo Group, Korea (abstract). Pacific Science Congress Association, 16th Congress, p. 271.
  26. Kim, J.H. and Kimura, T., 1988, Lobatannularia nampoensis (Kawasaki) Kawasaki from the Upper Triassic Baegunsa Formation, Nampo Group, Korea. Proceedings of Japan Academy Science, Series B64, 221-224.
  27. Kim, J.W. and Chough, S.K., 2000, A gravel lobe deposit in the prodelta of the Doumsan fand delta (Miocene), SE Korea, Sedimentary Geology, 130, 183-203. https://doi.org/10.1016/S0037-0738(99)00111-6
  28. Krapez, B. and Han, J.L., 2008, Late Archaean deepmarine volcaniclastic sedimentation in an arc-related basin: The Kalgoorlie Sequence of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. Precambrian Research, 161, 89-113. https://doi.org/10.1016/j.precamres.2007.06.014
  29. Laird, M.G., 1995, Coarse-grained lacustrine fan-delta deposits (Pororari Group) of the northwestern South Island, New Zealand: Evidence for Mid-Cretaceous rifting. In Plint, A.G. (ed.), Sedimentary facies analysis. International Association of Sedimentologists Special Publication, 22, Blackwell Scientific Publication, London, UK, 197-217.
  30. Lowe, D.R., 1982, Sediment gravity flows II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Reaserch, 52, 279-297.
  31. Mastalerz, K., 1995, Deposit of high-density turbidity currents on fan-delta slopes: An example from the upper Visean Szczawno Formation, Intrasudetic Basin, Poland. Sedimentary Geology, 98, 121-146. https://doi.org/10.1016/0037-0738(95)00030-C
  32. Miall, A.D., 1977, A review of the braided river depositional environment. Earth Science Review, 13, 1-62. https://doi.org/10.1016/0012-8252(77)90055-1
  33. Miall, A.D., 1978, Lithofacies types and vertical profile models in braided river deposits: A summary. In Miall, A.D. (ed.), Fluvial Sedimentology. Canadian Society of Petorluem Goulogy Memoir, 5, 597-604.
  34. Miall, A.D., 1996, The Geology of Fluvial Deposits. Springer-Verlag, Berlin, Germany, 582 p.
  35. Mulder, T. and Alexander, J., 2001, The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
  36. Nemec, W. and Steel, R.J., 1984, Alluvial and coastal conglomerates: Their sighificant features and some comments on gravelly mass-flow deposits. In Koster, E.H. and Steel, R.J. (eds.), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists, 10, 1-32.
  37. Nichols, G., 1999, Sedimentology and stratigraphy. Blackwell Science, Oxford, UK, 355 p.
  38. Ortner, H., Ustaszewski, M., and Rittiner, M., 2008, Late Jurassic tectonics and sedimentation: Breccias in the Unken syncline, central Northern Calcareous Alps. Swiss Journal of Geosciences, 101, Supplement 1, S55-S71. https://doi.org/10.1007/s00015-008-1282-0
  39. Plint, A.G., 1983, Sandy fluvial point-bar sediments from the middle Eocene of Dorset, England. In Collinson, J.D. and Lewin, J. (eds.), Modern and Ancient Fluvial Systems. Inernational Association of Sedimentologists, Special Publication 6, 355-368.
  40. Rasmussen, H., 2000, Nearshore and alluvial facies in the Sant Llorenc del Nunt depositional system: Recognition and development. Sedimentary Geology, 138, 71-98. https://doi.org/10.1016/S0037-0738(00)00144-5
  41. Read, J.F., 1982, Carbonate platform of passive (extensional) continental margins: Types, characteristics and evolution. Tectonophysics, 81, 195-221. https://doi.org/10.1016/0040-1951(82)90129-9
  42. Ree, J.H., Han, R., Cho, D.L., Kwon, S.T., and Armstrong, R., 2006, SHRIMP U-Pb zircon ages of pyroclastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics. Gondwana Research, 9, 106-117. https://doi.org/10.1016/j.gr.2005.06.006
  43. Shultz, A.W., 1984, Subaqueous debris-flow deposition in the Upper Paleozoic Culter Formation, western Colorado. Journal of Sedimentary Petrology, 54, 759-772.
  44. Sohn, Y.K., Choe, M.Y., and Jo, H.R., 2002, Transition from debris flow to hyperconcentrated flow in a submarine channel (the Cretaceous cerro Toro Formation, southern Chile). Terra Nova, 14, 405-415. https://doi.org/10.1046/j.1365-3121.2002.00440.x
  45. Tanner, L.H. and Hubert, J.F., 1991, Basalt breccias and conglomerates in the lower Jurassic McCoy Brook Formation, Fundy Basin, Nova Scotia: Differentiation of talus and debris-flow deposits. Journal of Sedimentary Petrology, 61, 15-27.
  46. Turkmen, I., Aksoy, E., and Tasgin, C.K., 2007, Alluvial and lacustrine facies in an extensional basin: The Miocene of Maltya basin, eastern Turkey. Journal of Asian Earth Sciences, 30, 181-198. https://doi.org/10.1016/j.jseaes.2006.08.006

Cited by

  1. Occurrence of the Fossil Mesopsyche dobrokhotovae in the Late Triassic Amisan Formation, Nampo Group, Korea and its Geological Implication vol.35, pp.3, 2014, https://doi.org/10.5467/JKESS.2014.35.3.161