DOI QR코드

DOI QR Code

Reliability Updates of Driven Piles Based on Bayesian Theory Using Proof Pile Load Test Results

베이지안 이론을 이용한 타입강관말뚝의 신뢰성 평가

  • 박재현 (한국건설기술연구원 지반연구실) ;
  • 김동욱 (한국건설기술연구원 지반연구실) ;
  • 곽기석 (한국건설기술연구원 지반연구실) ;
  • 정문경 (한국건설기술연구원 지반연구실) ;
  • 김준영 (서울대학교 건설환경공학부) ;
  • 정충기 (서울대학교 건설환경공학부)
  • Received : 2010.04.27
  • Accepted : 2010.07.26
  • Published : 2010.07.31

Abstract

For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was obrained based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability indices of driven steel pipe piles by adding more proof pile load test results, even not conducted to failure, to the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. The empirical method proposed by Meyerhof is used to calculate the predicted pile resistance. Reliability analyses were performed using the updated distribution of pile resistance ratio. The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian updates are most effective when limited data are available for reliability analysis.

기초구조물의 저항계수 산정 및 하중저항계수설계법의 개발을 위해서는 충분한 양의 데이터베이스 구축을 바탕으로 정확한 신뢰성 분석이 수행되어야 한다. 기존 국내외 말뚝기초의 신뢰성 분석 연구에서는 말뚝의 측정지지력 확인이 가능한 재하시험 자료만을 이용하여 저항편향계수의 분포특성을 산정하였다. 따라서, 파괴에 이르지 않은 말뚝재하시험 자료는 신뢰성 분석에서 제외되었다. 본 연구에서는 베이지안 이론을 이용하여 타입강관말뚝 저항편향계수의 사전 분포특성에 측정지지력을 확인할 수 없는 재하시험 결과를 추가하여 현장 특성을 반영한 저항편향계수의 사후분포특성을 산정하였다. 그리고 저항편향계수의 사후분포특성을 이용하여 말뚝의 신뢰성 평가를 수행하고 신뢰도수준을 갱신하였다. 국내 전역에서 수행된 양질의 정재하시험 자료를 수집, 분석하여 57개의 자료에 대한 측정지지력을 확인하였고, 이들 자료에 대해서 구조물기초설계기준에서 제안하고 있는 Meyerhof 공식을 이용하여 설계지지력을 산정하였다. 이를 통해 저항편향계수의 사전분포 특성을 정량화 하였으며, 베이지안 기법을 적용하여 다양한 현장재하시험 결과에 따라 저항편향계수의 사후분포를 산정하였다. 갱신된 저항편향계수 통계특성을 적용하여 일차신뢰도법을 이용하여 강도 높은 신뢰성 해석을 수행하고 시험결과에 따른 신뢰도 수준을 평가하였다. 본 연구에서 제시된 방법을 통해 양질의 측정지지력 데이터가 부족한 경우 베이지안 기법을 이용하여 신뢰성 분석이 가능함을 확인하였다.

Keywords

References

  1. 국토해양부 (2009), 구조물기초설계기준 해설, (사)한국지반공학회.
  2. 박재현, 허정원, 김명모, 곽기석 (2008), "LRFD 설계를 위한 국내 항타강관말뚝의 저항계수 산정", 대한토목학회 논문집, Vol.28, No.6C, pp.367-377.
  3. 한국건설기술연구원 (2008), LRFD 기초구조물 설계를 위한 저항계수 결정 연구, 건설교통 R&D 정책.인프라사업 3차년도 최종 연구보고서, 국토해양부.
  4. (사)한국지반공학회 (1997), 지반조사 결과의 해석 및 이용, 지반공학시리즈 1, 도서출판 구미서관.
  5. Allen, TM (2005), "Development of Geotechnical Resistance Factors and Downdrag Load Factors for LRFD Foundation Strength Limit State Design", Publication No. FHWA-NHI-05-052, Federal Highway Administration, U.S. Department of Transportation.
  6. American Association of State Highway and Transportation Official (AASHTO) (2007), AASHTO LRFD Bridge Design Specifications Fourth Edition. AASHTO, Washington DC.
  7. Ang, A.H.-S. and Tang, W.H. (1975), Probability Concepts in Engineering Planning and Design. Vol. I, Basic Principles, John Wiley & Sons, New York.
  8. Bolduc, L.C., Gardoni, P., and Briaud, J.-L. (2008), "Probabilisty of exceedance estimates for scour depth around bridge piers", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.134, No.2, pp.175-184. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(175)
  9. Cetin, K.O. and Ozan, C. (2009), "CPT-Based probabilistic soil characterization and classification", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.1, pp.84-107. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(84)
  10. Davisson, M. (1972), "High Capacity Piles", Proceedings of Soil Mechanics Lecture Series on Innovations in Foundation Construction, ASCE, Illinois Section, Chicago, IL, pp.82-112.
  11. Goh, A.T.C., Kulhawy, F.H., and Chua, C.G. (2005), "Bayesian neural network analysis of undrained side resistance of drilled shafts", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.131, No.1, pp.84-93. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(84)
  12. Hansell, WC and Viest, IM (1971), "Load factor design for steel highway bridges", Engineering Journal of AISC, Vol.18, No.4, pp.113-123.
  13. Honjo, Y., Liu, W.-T., and Guha, S. (1994), "Inverse analysis of an embankment on soft clay by extended bayesian method", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.18, pp.709-734 https://doi.org/10.1002/nag.1610181004
  14. Juang, C.H., Fang, S.Y., and Khor, E.H. (2006), "First-order reliability method for probabilistic liquefaction triggering analysis using CPT", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.132, No.3, pp.337-350. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(337)
  15. Kwak, K., Kim, K.J., Huh, J., Park, J.H., Chung, M., and Lee, J.H. (2008), "Target reliability indices of static bearing capacity evaluation of driven steel pipe piles", Proceedings of the 87th Annual Meeting of Transportation Research Board, Transportation Research Board, Washington, D.C. (CD-ROM).
  16. Kwak, K., Kim, K.J., Huh, J., Lee, J.H., and Park, J.H. (2010), "Reliability Based Calibration of Resistance Factors for Static Bearing Capacity of Driven Steel Pipe Piles", Canadian Geotechnical journal, to be published (accepted in September 2009).
  17. Li, D.Q., Tang, W.H., and Zhang, L.M. (2008), "Updating occurrence probability and size of defect for bored piles", Structural Safety, Vol.30, pp.130-143. https://doi.org/10.1016/j.strusafe.2006.09.002
  18. McVay, M.C., Birgisson, B., Nguyen, T., and Kuo, C.L. (2002), "Uncertainty in load and resistance factor design phi factors for driven prestressed concrete piles", Transportation Research Record, No. 1808, Transportation Research Board, Washington, D.C., pp. 99-107.
  19. McVay, M.C., Birgisson, B., Zhang, L., Perez, A., Putcha, S., and Lee, S.M. (2000), "Load and resistance factor design (LRFD) for driven piles using dynamic methods-A Florida perspective", Geotechnical Testing Journal, Vol.23, No.1, pp.55-66. https://doi.org/10.1520/GTJ11123J
  20. Meyerhof, G.G. (1976), "Bearing capacity and settlement of pile foundations", Journal of Geotechnical Engineering Division, ASCE, Vol.102, No.GT3, pp.196-228.
  21. Moss, R.E.S., Seed, R.B., Kayen, R.E., Stewart, J.P., Kiureghian, A.D., and Cetin, K.O. (2006), "CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.132, No.8, pp.1032-1051. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032)
  22. Paikowsky, S.G., Birgisson, B., McVay, M.C., Nguyen, T., Kuo, C.L., Baecher, G., Ayyab, B., Stenersen, K., O'Malley, K., Chernauskas, L., and O'Neill, M. (2004), Load and Resistance Factor Design for Deep Foundations, NCHRP Report 507, Transportation Research Board, Washington, D.C.
  23. Phoon, K.K., Kulhawy, F.H., and Grigoriu, M.D. (2003), "Development of a reliability-based design framework for transmission line structure foundations", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.9, pp.798-806. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:9(798)
  24. Rackwitz, R. and Fiessler, B. (1978), "Structural reliability under combined random load sequences", Computers and Structures, Vol.9, pp.489-494. https://doi.org/10.1016/0045-7949(78)90046-9
  25. Yan, W.M., Yuen, K.-V., and Yoon, G.L. (2009), "Bayesian probabilistic approach for the correlations of compression index for marine clays", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.12, pp.1932-1940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000157
  26. Zhang, L.L., Tang, W.H., and Zhang, L.M. (2009), "Bayesian model calibration using geotechnical centrifuge tests", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.2, pp.291-299. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(291)
  27. Zhang, L.L., Zhang, L.M., and Tang, W.H. (2008), "Similarity of soil variability in centifuge models", Canadian Geotechnical journal, Vol.45, No.8, pp.1118-1129. https://doi.org/10.1139/T08-066
  28. Zhang, L.M. and Tang, W.H. (2002), "Use of load tests for reducing pile length", Proceedings of Deep Foundation 2002, ASCE, Orlando, Florida, pp.993-1005.
  29. Zhang, L.M., Tang, W.H., Zhang, L.L., and Zhang, J. (2004), "Reducing uncertainty of prediction from empirical correlations", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No.5, pp.526-534. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(526)