DOI QR코드

DOI QR Code

Numerical Analysis and Optimum Design of Disposable Drug Infuser Using Fluid-Structure Interaction Technique

유체-구조 상호작용기법을 이용한 일회용 약물주입기의 성능 해석 및 최적 설계

  • Kim, Heon-Young (Dept. of Mechanical and Biomedical Engineering, College of Engineering, Kangwon National Univ.) ;
  • Kim, Hak-Jin (Dept. of Mechanical and Biomedical Engineering, College of Engineering, Kangwon National Univ.)
  • 김헌영 (강원대학교 기계의용공학과) ;
  • 김학진 (강원대학교 기계의용공학과)
  • Received : 2010.03.12
  • Accepted : 2010.09.14
  • Published : 2010.11.01

Abstract

A disposable drug infuser is used to provide drugs to patients who are not hospitalized; in this infuser, an elastic recovery force is exerted by a diaphragm made of a rubber-like materialsuch that a constant amount of drugs is provided to a patient. The drug infuser has to control the speed and amount of drugs to be released, as well as the overall duration for which they are to be administered. However, in a drug infuser with an elastic diaphragm, the infusion pressure depends on the amount of drug remaining within the infuser, and the amount of drug infused gradually decreases as the amount remaining in the infuser decreases. In this study, a finite element procedure involving the application of the fluid-structure interaction technique was developed and the performance of the elastic type disposable drug infuser was analyzed. The optimum design for ensuring that the infusion pressure remains constant throughout the duration of usage, including during infusion and discharge, was determined by this procedure.

본 논문은 유체-구조 상호작용기법을 활용하여 약물을 일정하게 공급할 수 있는 약물주입기의 성능을 예측하고 이를 바탕으로 탄성체 구조의 최적 설계안을 제안한다. 탄성체 약물주입기는 지속적인 약물치료를 필요로 하는 재택환자에게 일정하고 안정된 속도로 약물을 주입하기 위해 개발되었으며, 약물을 수용하는 탄성체의 회복력을 이용하여 일정시간 동안 지속적으로 약물을 공급하는 장치이다. 기존의 탄성체 약물주입펌프는 약물의 잔여량에 따라 주입 압력이 변하고, 약물의 주입량이 시간이 지남에 따라 감소하는 문제점이 있다. 이를 해결하기 위하여 약물이 주입되고 배출되는 전 단계에 걸쳐 일정한 압력을 유지하도록 기구부를 최적설계하고, 유한요소해석 및 실험을 통해 성능을 검증하였다.

Keywords

References

  1. Skokal W. A., 1997, "Infusion Pump Update," RN 60, pp.35-38.
  2. Dorr R. T., Trinca C. E., Griffith K., Dombrowsky P. L. and Salmon S. E., 1979 "Limitations of a Portable Infusion Pump in Ambulatory Patients Receiving Continuous Infusions of Anticancer Drugs," Cancer Treat Rep, No.63, pp.211-213.
  3. Nam, S. B., Chang, C. H.. Rhee, H. D. and Lee, Y.-W., 2002, "Clinical Application of Gas Forming Infusion Pump for Intravenous Postoperative Pain Control," The Korean Pain Society, pp.190-197.
  4. Munson, B. R., Young, D. F. and Okiishi, T. H., 2006, "Fundamentals of Fluid Mechanics," pp.319-369.
  5. ADINA R&D, 2008, "Theory and Modeling Guide," Vol.1, pp.615-627.
  6. Degroote, J., Bathe, K.-J. and Vierendeels, J., 2008, "Performance of a New Partitioned Procedure Versus a Monolithic Procedure in Fluid–Structure Interaction," Computers and Structures, Vol.87, pp.793-801. https://doi.org/10.1016/j.compstruc.2008.11.013
  7. Li, C. and Lua, J., 2009, "A Hyper-Viscoelastic Constitutive Model for Polyurea," Materials Letters, Vol.63, pp.877-880. https://doi.org/10.1016/j.matlet.2009.01.055
  8. Ilfeld, B. M., Morey, T. E. and Enneking, K. F., 2003, "Portable Infusion Pumps Used for Continuous Regional Analgesia: Delivery Rate Accuracy and Consistency," Regional Anesthesia and Pain Medicine, Vol.28, No.5, pp.424-432.
  9. Ackermann, M., Maier, S., Ing, H. and Bonnabry, P., 2007, "Evaluation of the Design and Reliability of Three Elastomeric and One Mechanical Infusers," Journal of Oncology Pharmacy Practice Vol. 13, No.2, pp.77-84. https://doi.org/10.1177/1078155207078349