Abstract
Programming education needs learning which is adjusted individual learners' level of their learning abilities. Recommendation system is one way of implementing personalized service. In this research, we propose recommendation method which learning items are recommended for individual learners' learning in web-based programming education environment by. Our proposed system for leveled programming education provides appropriate programming problems for a certain learner in his learning level and learning scope employing collaborative filtering method using learners' profile of their level and correlation profile between learning topics. As a result, it resolves a problem that providing appropriate programming problems in learner's level, and we get a result that improving leaner's programming ability. Furthermore, when we compared our proposed method and original collaborative filtering method, our proposed method provides the ways to solve the scalability which is one of the limitations in recommendation systems by improving recommendation performance and reducing analysis time.
프로그래밍 교육은 학습자 개개인의 특성에 맞는 수준별 단계별 학습이 필요하다. 추천시스템은 개인화서비스를 위해 사용되는 방법의 하나로, 본 연구에서는 추천시스템을 사용하여 웹기반 프로그래밍 교육 환경에서 학습자 개개인에 적합한 학습을 추천할 수 있는 방법을 제공한다. 제안하는 수준별 프로그래밍 학습을 위한 추천시스템은 학습주제별 학습수준 기반 학습자 프로파일과 학습주제사이의 연관성 프로파일을 이용한 협업 필터링을 사용하여 특정 학습자의 학습수준과 학습범위에 적절한 프로그래밍 문제를 제공하도록 한다. 그 결과 프로그래밍 언어 교육과정에서 발생하는 수준별 단계별 학습에 맞는 프로그래밍 문제 제공의 어려움을 해결하여, 학습자의 프로그래밍 능력 향상의 결과를 얻을 수 있었다. 더 나아가 기존 협업필터링 방법을 사용하는 경우와 비교해 볼 때 추천 성능향상 및 분석 시간 감소를 통해 추천시스템의 한계점 중의 하나인 확장성을 해결할 수 있는 방법을 제시한다.