$CO_2$ Transport for CCS Application in Republic of Korea

이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송

  • Huh, Cheol (Marine Safety & Pollution Response Research Department, Korea Ocean Research & Development Institute) ;
  • Kang, Seong-Gil (Marine Safety & Pollution Response Research Department, Korea Ocean Research & Development Institute) ;
  • Cho, Mang-Ik (Marine Safety & Pollution Response Research Department, Korea Ocean Research & Development Institute)
  • 허철 (한국해양연구원 해양시스템안전연구소 해양안전방제기술연구부) ;
  • 강성길 (한국해양연구원 해양시스템안전연구소 해양안전방제기술연구부) ;
  • 조맹익 (한국해양연구원 해양시스템안전연구소 해양안전방제기술연구부)
  • Received : 2009.11.10
  • Accepted : 2010.02.12
  • Published : 2010.02.25

Abstract

Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

기후온난화에 대처하기 위한 방안 중, $CO_2$ 해양지중저장은 성공가능성이 높은 수단중의 하나로써 각광받고 있다. $CO_2$ 해양지중저장은 대량 발생원으로부터 $CO_2$를 포집하여 저장지로 수송한 후, 가스 저장층 이나 염대수층 등과 같은 해저 지질구조 내에 $CO_2$를 저장하는 공정 전체를 아울러 지칭한다. 우리는 2005년부터 $CO_2$ 해양지중저장 관련 기술들을 개발해왔으며, 주요 기술 개발 분야에는 $CO_2$ 저장후보지 탐색과 $CO_2$ 수송 및 저장 공정을 위한 기본 설계가 포함된다. 신뢰성 있는 $CO_2$ 해양지중저장 시스템설계를 위해, 가상시나리오를 개발하였으며 수치해석 프로그램을 이용하여 전체공정을 분석하였다. $CO_2$ 포집원으로 부터 주입저장지로 $CO_2$를 수송하는 공정은 열역학 상태방정식으로 모사 가능하다. 본격적인 설계공정에 대한 수치해석을 수행하기에 앞서 관련 열역학 상태방정식들을 비교 및 분석하였다. 분석된 상태방정식들의 정확도를 평가하기 위해 참조문헌의 실험데이터와 수치계산결과를 비교하였다. 현재까지 진행된 $CO_2$ 해양지중저장 공정설계는 주로 순수한 $CO_2$를 대상으로 하였다. 하지만 포집된 $CO_2$ 혼합물은 질소, 산소, 아르곤, 물, 황화수소 등의 불순물을 포함하고 있다. 작은 양의 불순물이 포함될 시에도 열역학적 물성치가 바뀔 뿐 만 아니라, 압축, 정제, 수송 공정 전체에 막대한 영향을 미치게 되므로 간과되어서는 안 된다. 본 논문에서는 해상 및 육상 $CO_2$ 수송에 영향을 미치는 주요 설계 인자들을 분석하였으며, 가상 시나리오의 매개변수에 관한 연구를 수행한 다음, 유량, 직경, 온도, 압력 등의 설계 인자들의 변화 범위를 제시하고자 하였다.

Keywords

References

  1. Arai, Y., Kaminishi, C. and Saito, S., 1971, "The Experimental Determination of the P-V-T-X Relations for the Carbon Dioxide-nitrogen and the Carbon Dioxide-mehtane Systems", J Chem Eng Jpn, Vol 4, 113-122. https://doi.org/10.1252/jcej.4.113
  2. Aspen Technology Inc., 2009, Aspen Plus Ver. 7.1, Cambridge, MA, USA.
  3. Benedict, M., Webb and G.B., Rubin, L.C., 1940, "An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures", J Chem Phys, Vol 8, 334. https://doi.org/10.1063/1.1750658
  4. Boston, J.F. and Mathias, P.M., 1980, "Phase Equlibria in a Third Generation Process Simulator", Proc. 2nd Int. Conf Phase Equilibrium and Fluid Properties in the Chemical Process Industries, West Berlin, Vol 1, 823-849.
  5. Dorau, W., Al-Wakeel, I.M. and Knapp, H., 1983, "VLE Data for CO2-CF2Cl2, N2-CO2, N2-CF2Cl2 and N2-CO2-CF2Cl," Cryogenics, Vol 5, 29-35.
  6. Duschek, W., Kleinrahm, R., and Wagner, W., 1990, "Measurement and Correlation of the (Pressure, Density, Temperature) Relation of Carbon Dioxide: I. The Homogeneous Gas and Liquid Regions in the Temperature Range From 217K to 340K at Pressure up to 9MPa", J Chem Thermodynamics, Vol 22, 827-840. https://doi.org/10.1016/0021-9614(90)90172-M
  7. Huh, C. and Kang, S.G., 2008, "Process Design of Carbon Dioxide Storage in the Marine Geological Structure: I. Comparative Analysis of Thermodynamic Equations of State using Numerical Calculation", J KOSMEE, Vol 11, No 4, 181-190.
  8. Huh, C. and Kang, S.G., 2009, "Effect of Nitrogen Impurity on Process Design of CO2 Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter", J KOSMEE, Vol 12, 217-226.
  9. Huh, C., Kang, S.G., Hong, S., Choi, J.S., Moon, I.S., Lee, C.J., Cho, M.I. and Baek, J.H., 2009, "Onshore and Offshore Transport Process Design for Carbon Dioxide Sequestration in a Marine Geological Structure", Proc. 28th Int Conf Ocean, Offshore and Arctic Engineering, Vol 1.
  10. Kang, S.G. and Huh, C., 2008, "The Latest Progress on the Development of Technologies for CO2 Storage in Marine Geological structure and its Application in Republic of Korea", J. KOSMEE, Vol 11, 24-34.
  11. Klimeck, J., Kleinrahm, R. and Wagner, W., 2001, "Measurement of the (p, 1., T) Relation of Methane and Carbon Dioxide in the Temperature Range 240K to 520K at Pressure up to 30MPa Using a New Accurate Single-sinker Densimeter," J Chem Thermodynamics, Vol 33, 251-267. https://doi.org/10.1006/jcht.2000.0711
  12. Mathias, P.M., 1983, "A Versatile Phase Equilibrium Equation of State," Ind Eng Chem Process Des Dev, Vol 22, 385-391. https://doi.org/10.1021/i200022a008
  13. Metz, B., Davidson, O., Coninck, H.D., Loos, M. and Meyer, L., 2005, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge Press.
  14. Muirbrook, N.K. and Prausnitz, J.M., 1965, "Multicomponent Vapor-liquid Equilibria at High Pressure: Part I. Experimental Study of Nitrogen-oxygen-carbon dioxide System at 0 $^{\circ}C$", AIChe J, Vol. 11, 1092-1097. https://doi.org/10.1002/aic.690110624
  15. Peng, D. Y. and Robinson, D. B., 1976, "A New Two-constant Equation of State", Ind Eng Chem Fund, Vol 15, 59-64. https://doi.org/10.1021/i160057a011
  16. Redlich, O. and Kwong, J. N. S., 1949, "On the Thermodynamics of Solutions", Chem Rev, Vol 44, 233-244. https://doi.org/10.1021/cr60137a013
  17. Soave, G., 1972, "Equilibrium Constants for Modified Redlich-Kwong Equation of State", Chem Eng Sci, Vol 27, 1196-1203.