DOI QR코드

DOI QR Code

ERROR ANALYSIS ASSOCIATED WITH UNIFORM HERMITE INTERPOLATIONS OF BANDLIMITED FUNCTIONS

  • Annaby, Mahmoud H. (DEPARTMENT OF MATHEMATICS STATISTICS & PHYSICS QATAR UNIVERSITY) ;
  • Asharabi, Rashad M. (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SANA'A UNIVERSITY)
  • 투고 : 2009.04.01
  • 발행 : 2010.11.01

초록

We derive estimates for the truncation, amplitude and jitter type errors associated with Hermite-type interpolations at equidistant nodes of functions in Paley-Wiener spaces. We give pointwise and uniform estimates. Some examples and comparisons which indicate that applying Hermite interpolations would improve the methods that use the classical sampling theorem are given.

키워드

참고문헌

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1972.
  2. H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373-389. https://doi.org/10.1090/S0025-5718-97-00807-7
  3. M. H. Annaby and R. M. Asharabi, Truncation, amplitude and jitter errors on R for sampling series derivatives, Submitted.
  4. M. H. Annaby and R. M. Asharabi, Approximating eigenvalues of discontinuous problems by sampling theorems, J. Numer. Math. 16 (2008), no. 3, 163-183. https://doi.org/10.1515/JNUM.2008.008
  5. M. H. Annaby and R. M. Asharabi, On sinc-based method in computing eigenvalues of boundary-value problems, SIAM J. Numer. Anal. 46 (2008), no. 2, 671-690. https://doi.org/10.1137/060664653
  6. M. H. Annaby and M. M. Tharwat, On computing eigenvalues of second-order linear pencils, IMA J. Numer. Anal. 27 (2007), no. 2, 366-380. https://doi.org/10.1093/imanum/drl026
  7. R. P. Boas, Entire Functions, Academic Press, New York, 1954.
  8. A. Boumenir and B. Chanane, Eigenvalues of S-L systems using sampling theory, Appl. Anal. 62 (1996), no. 3-4, 323-334. https://doi.org/10.1080/00036819608840486
  9. J. L. Brown, Jr., Bounds for truncation error in sampling expansions of band-limited signals, IEEE Trans. Information Theory IT-15 (1969), 440-444.
  10. P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition 3 (1983), no. 1, 185-212.
  11. P. L. Butzer, W. Engels, and U. Scheben, Magnitude of the truncation error in sampling expansions of band-limited signals, IEEE Trans. Acoust. Speech Signal Process ASSP-30 (1982), 906-912.
  12. P. L. Butzer, J. R. Higgins, and R. L. Stens, Sampling theory of signal analysis, Development of mathematics 1950-2000, 193-234, Birkhauser, Basel, 2000.
  13. P. L. Butzer, G. Schmeisser, and R. L. Stens, An introduction to sampling analysis, Nonuniform sampling, 17-121, Inf. Technol. Transm. Process. Storage, Kluwer/Plenum, New York, 2001.
  14. P. L. Butzer and W. Splettstosser, On quantization, truncation and jitter errors in the sampling theorem and its generalizations, Signal Process. 2 (1980), no. 2, 101-112. https://doi.org/10.1016/0165-1684(80)90002-X
  15. P. L. Butzer, W. Splettstosser, and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 1, 1-70.
  16. K. Chandrasekharan, Classical Fourier Transforms, Springer-Verlag, Berlin, 1989.
  17. G. R. Grozev and Q. I. Rahman, Reconstruction of entire functions from irregularly spaced sample points, Canad. J. Math. 48 (1996), no. 4, 777-793. https://doi.org/10.4153/CJM-1996-040-7
  18. J. R. Higgins, Sampling Theory in Fourier and Signal Analysis Foundations, Oxford University Press, Oxford, 1996.
  19. J. R. Higgins, G. Schmeisser, and J. J. Voss, The sampling theorem and several equivalent results in analysis, J. Comput. Anal. Appl. 2 (2000), no. 4, 333-371.
  20. G. Hinsen, Irregular sampling of bandlimited $L^p-functions$, J. Approx. Theory 72 (1993), no. 3, 346-364. https://doi.org/10.1006/jath.1993.1027
  21. D. Jagerman, Bounds for truncation error of the sampling expansion, SIAM J. Appl. Math. 14 (1966), 714-723. https://doi.org/10.1137/0114060
  22. D. Jagerman and L. Fogel, Some general aspects of the sampling theorem, IRE Trans. Inform. Theory 2 (1956), 139-146. https://doi.org/10.1109/TIT.1956.1056821
  23. X. M. Li, Uniform bounds for sampling expansions, J. Approx. Theory 93 (1998), no. 1, 100-113. https://doi.org/10.1006/jath.1996.3090
  24. J. Lund and K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992.
  25. H. Minc and L. Sathre, Some inequalities involving $(r!)^{1/r}$, Proc. Edinburgh Math. Soc. (2) 14 (1964/1965), 41-46. https://doi.org/10.1017/S0013091500011214
  26. R. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ 19, 1934.
  27. H. S. Piper, Jr., Bounds for truncation error in sampling expansios of finite energy band-limited signals, IEEE Trans. Inform. Theory IT-21 (1975), 482-485.
  28. W. Splettstosser, R. L. Stens, and G. Wilmes, On approximation by the interpolating series of G. Valiron, Funct. Approx. Comment. Math. 11 (1981), 39-56.
  29. F. Stenger, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev. 23 (1981), no. 2, 165-224. https://doi.org/10.1137/1023037
  30. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, Berlin, 1993.
  31. J. J. Voss, Irregulares Abtasten: Fehleranalyse, Anwendungen und Erweiterungen, Ph. D. thesis, Erlangen, 1999.
  32. K. Yao and J. B. Thomas, On truncation error bounds for sampling representations of band-limited signals, IEEE Trans. Aerospace Electronic Syst. AES-2 (1966), 640-647. https://doi.org/10.1109/TAES.1966.4501956

피인용 문헌

  1. Computation of eigenvalues of discontinuous dirac system using Hermite interpolation technique vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1847-2012-59
  2. Computing Eigenvalues of Discontinuous Sturm-Liouville Problems with Eigenparameter in All Boundary Conditions Using Hermite Approximation vol.2013, 2013, https://doi.org/10.1155/2013/498457
  3. A Modification of Hermite Sampling with a Gaussian Multiplier vol.36, pp.4, 2015, https://doi.org/10.1080/01630563.2015.1013550
  4. Computing eigenvalues and Hermite interpolation for Dirac systems with eigenparameter in boundary conditions vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-2770-2013-36
  5. Generalized sinc-Gaussian sampling involving derivatives vol.73, pp.4, 2016, https://doi.org/10.1007/s11075-016-0129-4
  6. Computing eigenvalues of Sturm–Liouville problems by Hermite interpolations vol.60, pp.3, 2012, https://doi.org/10.1007/s11075-011-9518-x
  7. The Hermite interpolation approach for computing eigenvalues of Dirac systems vol.57, pp.9-10, 2013, https://doi.org/10.1016/j.mcm.2012.07.025
  8. Truncation error estimates for generalized Hermite sampling vol.74, pp.2, 2017, https://doi.org/10.1007/s11075-016-0159-y
  9. Approximation of Eigenvalues of Sturm-Liouville Problems by Using Hermite Interpolation vol.2013, 2013, https://doi.org/10.1155/2013/412028
  10. Double sampling derivatives and truncation error estimates vol.33, pp.2, 2018, https://doi.org/10.1007/s11766-018-3444-9