References
- M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), no. 1, 181–188. https://doi.org/10.1016/S0022-247X(02)00059-8
- A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322 (2006), no. 2, 796–802. https://doi.org/10.1016/j.jmaa.2005.09.068
- D. K. Burke, Cauchy sequences in semimetric spaces, Proc. Amer. Math. Soc. 33 (1972), 161–164.
- S. H. Cho, G. Y. Lee, and J. S. Bae, On coincidence and fixed-point theorems in symmetric spaces, Fixed Point Theory Appl. 2008 (2008), Art. ID 562130, 9 pp. https://doi.org/10.1155/2008/562130
- F. Galvin and S. D. Shore, Completeness in semimetric spaces, Pacific J. Math. 113 (1984), no. 1, 67–75.
- [6] T. L. Hics and B. E. Rhoades, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Anal. 36 (1999), no. 3, Ser. A: Theory Methods, 331–344. https://doi.org/10.1016/S0362-546X(98)00002-9
- M. Imdad, J. Ali, and L. Khan, Coincidence and fixed points in symmetric spaces under strict contractions, J. Math. Anal. Appl. 320 (2006), no. 1, 352–360. https://doi.org/10.1016/j.jmaa.2005.07.004
- G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), no. 4, 771–779.
- G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 (1996), no. 2, 199–215.
- G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory 7 (2006), no. 2, 287–296.
- Y. Liu, J. Wu, and Z. Li, Common fixed points of single-valued and multivalued maps, Int. J. Math. Math. Sci. 2005 (2005), no. 19, 3045–3055. https://doi.org/10.1155/IJMMS.2005.30453046
- R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), no. 2, 436–440.
- R. P. Pant, Common fixed points of Lipschitz type mapping pairs, J. Math. Anal. Appl. 240 (1999), no. 1, 280–283.
- V. Pant, Common fixed points under Lipschitz type condition, Bull. Korean Math. Soc. 45 (2008), no. 3, 467–475.
- R. P. Pant and V. Pant, Common fixed points under strict contractive conditions, J. Math. Anal. Appl. 248 (2000), no. 1, 327–332. https://doi.org/10.1006/jmaa.2000.6871
- K. P. R. Sastry and I. S. R. Krishna Murthy, Common fixed points of two partially commuting tangential selfmaps on a metric space, J. Math. Anal. Appl. 250 (2000), no. 2, 731–734.
- W. A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), no. 2, 361–373.
Cited by
- Some Integral Type Fixed Point Theorems for Non-Self-Mappings Satisfying Generalized(ψ,φ)-Weak Contractive Conditions in Symmetric Spaces vol.2014, 2014, https://doi.org/10.1155/2014/519038
- ABSORBING PAIRS FACILITATING COMMON FIXED POINT THEOREMS FOR LIPSCHITZIAN TYPE MAPPINGS IN SYMMETRIC SPACES vol.27, pp.2, 2012, https://doi.org/10.4134/CKMS.2012.27.2.385
- Some Nonunique Common Fixed Point Theorems in Symmetric Spaces through Property vol.2013, 2013, https://doi.org/10.1155/2013/753965