슈베르트마나이트의 $AsO_4,\;SeO_3,\;CrO_4$ 흡착 및 열적 특성

Sorption and Thermal Characteristics of $AsO_4,\;SeO_3,\;CrO_4$ on Schwertmannite

  • 금교진 (경북대학교 자연과학대학 지질학과) ;
  • 정은하 (경북대학교 자연과학대학 지질학과) ;
  • 김영규 (경북대학교 자연과학대학 지질학과)
  • Keum, Gyo-Jin (Department of Geology, Kyungpook National University) ;
  • Jung, Eun-Ha (Department of Geology, Kyungpook National University) ;
  • Kim, Yeong-Kyoo (Department of Geology, Kyungpook National University)
  • 투고 : 2010.05.23
  • 심사 : 2010.06.18
  • 발행 : 2010.06.30

초록

합성된 슈베르트마나이트를 대상으로 $AsO_4,\;SeO_3,\;CrO_4$ 세 종류의 산화음이온에 대한 흡착실험 및 흡착된 시료에 대하여 열분석을 실시하였다. 흡착 실험 결과 대체로 두 종류의 흡착 특성을 보이며 $AsO_4$$SeO_3$의 경우 약 1 mM의 농도까지 대부분의 용액 내 이온들이 100% 흡착된 것으로 나타났으나 그 이상의 농도에서는 흡착이 더 이상 뚜렷하게 증가되지 않는 것을 보여준다. 이는 기존의 $AsO_4$의 흡착 연구 결과에서처럼 $AsO_4$가 슈베르트마나이트 구조 내의 $SO_4$를 치환하기 때문으로 생각되며 $SeO_3$ 역시 $SO_4$를 1 : 1로 치환하기 때문으로 해석된다. 그러나 $CrO_4$의 경우 전 농도 구간에서 다른 산화음이온에 비하여 흡착이 훨씬 적게 일어났다. 열분석은 0.1 mM과 1.25 mM 농도에서 흡착된 시료에 대하여 각각 실시되었다. $AsO_4$로 흡착된 시료의 경우 $AsO_4$$SO_4$를 치환하고 있기 때문에 순수한 슈베르트마나이트에서 특징적으로 나타나는 약 $600^{\circ}C$에서의 질량 감소가 훨씬 적으며 약 $1,000^{\circ}C$ 이상에서 $AsO_4$의 분해에 의하여 추가적인 질량감소를 보인다. $SeO_3$로 흡착된 시료의 경우 $SO_4$에 비하여 약간 낮은 온도에서 질량감소가 일어나 좀 더 넓은 온도범위에서 질량감소를 보였다. 이 역시 $SeO_3$의 분해가 $SO_4$ 보다 약간 낮은 온도에서 일어나기 때문으로 사료된다. 그러나 $CrO_4$로 흡착된 시료는 $SO_4$에 의한 질량감소가 역시 적게 나타나나 $CrO_4$가 다른 산화음이온과 같이 고온에서 분해되지 않아 추가적인 질량감소를 보이지 않으며 이를 통하여 $CrO_4$ 역시 $SO_4$를 치환하고 있는 것으로 판단된다. 흡착실험 결과와 종합하여 볼 때 $CrO_4$ 역시 $SO_4$를 치환하며 흡착을 하나 다른 두 산화음이온에 비하여 $SO_4$와의 친화도, 광물 구조 내의 불안정성 등의 원인에 의하여 완전한 1 : 1 치환이 일어나지 않는 것으로 판단된다.

The sorption of $AsO_4,\;SeO_3,\;CrO_4$ on schwertmannite and thermal analysis of sorbed samples were carried out. The results of sorption experiments showed that sorption characteristics of those three oxyanions on schwertmannite can be divided into two groups. The extent of sorption of $AsO_4$ and $SeO_3$ were 100% at up to 1 mM solution concentration, and they increased no more significantly. This can be interpreted as $AsO_4$ and $SeO_3$ substituting $SO_4$ in schwertmannite strucure by the ratio of 1 : 1. The extent of the sorption of $CrO_4$ was much lower than those of other two oxyanions. Thermal analysis was performed using two kinds of sorbed samples at 0.1 and 1.25 mM concentrations. The results of the thermal analysis showed that the samples sorbed by three different oxyanions have different thermal characteristics. The samples sorbed by $AsO_4$ showed smaller weight loss around $600^{\circ}C$ than the original loss of pure schwertmannite, and it is attributed to the substitution of $AsO_4$ for $SO_4$, which was caused by the loss of $SO_4$, than pure schwertmannite due to the substitution of $SO_4$ by $AsO_4$. It also showed additional weight loss around $600^{\circ}C$ due to the decomposition of $AsO_4$ at that temperature. The weight loss of samples sorbed by $SeO_3$ started at slightly lower temperature than that sorbed by $SO_4$ and kept that loss at wider temperature range, probably indicating that the decomposition of $SeO_3$ occurs at slightly lower temperature. However, for the samples sorbed by $CrO_4$, the weight loss caused by the decomposition of $SO_4$ was also smaller and there was no additional weight loss at higher temperature due to the thermal stability of $CrO_4$, indicating that $SO_4$ was also substituted by $CrO_4$ in schwertmannite. Sorption experiment and thermal analysis indicate that $CrO_4$ sorbs on schwertmannite by substiuting $SO_4$, but the affinity to $SO_4$ or instability of $CrO_4$ in scwertmannite structure probably prohibit perfect 1 : 1 substitution.

키워드

참고문헌

  1. 정기영, 김강주 (2010) 금산군 마전리층 열수 광화대의 표성 함비소 Schwertmannite. 한국광물학회지, 23, 93-98.
  2. 박미선, 유재영 (2001) 합성 슈워트마나이트의 용해도. 한국광물학회지, 14, 21-30.
  3. Barham, R.J. (1997) Schwertmannite: A unique mineral, contains replaceable ligand, transforms to jarosites, hemaitites, and/or basic iron sulfate. J. Mat. Res., 2751-2758.
  4. Bigham, J.M., Schwertmann, U., Carlson, L., and Murad, E. (1990) A poorly crystallized oxyhydoxysysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim. Cosmochim. Acta, 54, 2743-2758. https://doi.org/10.1016/0016-7037(90)90009-A
  5. Bigham, J.M., Carlson. L., and Murad. E. (1994) Schwertmannite, a new iron oxyhydroxysulfate from Pyhsalmi, Finland, and other localities. Mineral. Mag., 58, 641-648. https://doi.org/10.1180/minmag.1994.058.393.14
  6. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta, 60, 2111-2121. https://doi.org/10.1016/0016-7037(96)00091-9
  7. Bigham, J.M. and Nordstrom, D.K. (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: C.N. Alpers, C.N., Jambor, J.L., and D.K. Nordstrom, D.K. (Eds.) Sulfate Minerals-Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, Vol. 40. Mineralogical Society of America, Washington, D.C., pp. 351-403 (Chapter 7).
  8. Cherry, D.S., Currie, R.J., Soucek, D.J., Latimer, H.A., and Trent, G.C. (2001) An integrative assessment of a watershed impacted by abandoned mined land discharges. Environ. Pollut., 111, 377-388. https://doi.org/10.1016/S0269-7491(00)00093-2
  9. Fukushi K., Sasaki, M., Sato, T., Yanase, N., Amano, H., and Ikeda, H. (2003a) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl. Geochem., 18, 1267-1278.
  10. Fukushi K., Sato, T., and Yanase, N. (2003b) Solid-solution reaction in As(V) sorption by schwertmannite. Environ. Sci. Technol., 37, 3581-3586. https://doi.org/10.1021/es026427i
  11. Fukushi K., Sato, T., Yanase, N., Minato, J., and Yamada, H. (2004) Arsenate sorption on schwertmannite. Am. Mineral., 89, 1728-1734. https://doi.org/10.2138/am-2004-11-1219
  12. Janney, D.E., Colwy, J.M., and Buseck, P.R. (2000) Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite. Clays Clay Mineral., 23, 310-317.
  13. Jönsson, J., Persson, P., Sjöberg, S., and Lövgren, L. (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl. Geochem., 20, 179-191. https://doi.org/10.1016/j.apgeochem.2004.04.008
  14. Konhauser, K.O. (1998) Diversity of bacterial iron mineralization. Earth-Sci. Rev., 43, 91-121. https://doi.org/10.1016/S0012-8252(97)00036-6
  15. Lee, J.E. and Kim, Y. (2008) A quantitative estimation of facotors affecting pH changes using simple geochemical data from acid mine drainage. Envrion. Geol., 55, 65-75. https://doi.org/10.1007/s00254-007-0965-6
  16. Loan, M. Cowley, J.M., Hart, R., and Parkinson, G.M. (2004) Evidence on the structure of syntehtic schwertmannite. Am. Mineral., 89, 1735-1742. https://doi.org/10.2138/am-2004-11-1220
  17. Murad, E., Schwertmann, U., Bigham, J.M., and Carlson, L. (1994) The mineralogical characteristics of poorly crystalline precipitates formed by oxidation of $Fe^{2+}$ in acid sulfate waters. In C.N. Alpers and D.W. Blowes, Eds., Envionmental Geochemsitry of Sulfide Oxidation, 681 p. American Chemical Society, Washington, D.C.
  18. Regenspurg, S., Brand, A., and Peiffer, S. (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim. Cosmochim. Acta, 68, 1185-1197. https://doi.org/10.1016/j.gca.2003.07.015
  19. Waychunas, G.A., Xu, N., Fuller, N., Davis, J.A., and Bigham, J.M. (1995) XAS study of AsO43- and SeO42- substituted schwertmannite. Physica B, 208/ 209, 481-483. https://doi.org/10.1016/0921-4526(94)00730-J
  20. Yu, J.Y., Heo, B., Choi, I.K., Cho, J.P., and Chang, H.W. (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainange. Geochim. Cosmochim. Acta, 63, 3407-3416. https://doi.org/10.1016/S0016-7037(99)00261-6