Poly(trimethylene terephthalate) 혼합에 의한 폴리프로필렌 섬유의 염색성 개선 (I) -PP/PTT 블렌드 필름의 제조 및 열적 특성-

Dyeability Improvement of Polypropylene Fibers by Poly(trimethylene terephthalate) Blending (I) -Preparation and Thermal Properties of PP/PTT Blend Films-

  • 박경철 (숭실대학교 유기신소재.파이버공학과) ;
  • 함명조 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Park, Kyung-Chul (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Ham, Myong-Jo (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young-Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2010.04.11
  • 심사 : 2010.06.02
  • 발행 : 2010.06.30

초록

To improve the dyeability of polypropylene (PP) fibers, PP/poly(trimethylene terephthalate) (PTT) blend fibers with various PTT contents were prepared using a commercial pilot spinning apparatus. The PP/PTT blend fibers were melt-pressed at $260^{\circ}C$ and quenched in ice-water to form PP/PTT blend films, and the thermal properties of the blend films were analyzed. DSC analysis showed that the melting temperature of the PP in the blends was unaffected by PTT blending and that PP and PTT crystallized independently. However, the melt crystallization temperature ($T_{mc}$) increased slightly with increasing the PTT content in PP/PTT blends. Synchrotron WAXS analysis of the annealed PP/PTT blend films showed that the crystal structure of PP in the blend films was the $\alpha$-form irrespective of the presence of PTT. SEM showed that PTT existed as spherical particles in the PP/PTT blends and that the particle size increased with increasing PTT content, which indicates that PTT was immiscible with PP. This immiscibility helped enhance the dyeing properties of the blend PP fibers.

키워드

참고문헌

  1. Z. H. Cui, S. F. Zhang, and J. Z. Yang, "Synthesis of New N-alkylsulfonamide-containing Phenylazopyrazolone Dyes and Their Application to Unmodified Polypropylene Fiber", Chinese Chem Lett, 2007, 18, 1145-1147. https://doi.org/10.1016/j.cclet.2007.06.027
  2. S. M. Cho, S. C. Choi, J. H. Lyu, and T. Hori, "Dyeing of Polypropylene Fibers in Supercritical Carbon Dioxide", J Korean Fiber Soc, 2001, 38, 564-576.
  3. D. S. Chang and I. S. Cho, "Surface Modification of Polypropylene by Low Temperature Plasma Polymerization(I)", J Korean Soc Dyers Finisher, 1996, 8, 8-15.
  4. Y. B. Choi and O. O. Park, "Preparation of Sulfonated Polypropylene and Its Dyeability: Thiol as a Functionalization Template of Polypropylene", J Appl Polym Sci, 2008, 109, 736-748. https://doi.org/10.1002/app.28054
  5. E. Bucio, G BuriIlo, M. P. Carreon-Castro, and T. Ogawa, "Functionalization of Polypropylene Film by Radiation Grafting of Acryloyl Chloride and Subsequent Esterification with Disperse Red 1", J Appl Polym Sci, 2004, 93, 172-178. https://doi.org/10.1002/app.20446
  6. A. R. Tehrani B., A. M. Shoushtari, R. M. A. Malek, and M. Abdous, "Effect of Chemical Oxidation Treatment on Dyeability of Polypropylene", Dyes Pigm, 2004, 63, 95-100. https://doi.org/10.1016/j.dyepig.2003.12.017
  7. A. A. Abdel-Fattah, F. I. A. Said, S. Ebraheem, M. EI-Kelany, and A. A. EI MiIigy, "Dyed Acrylic-acid Grafted Polypropylene Films for High-dose Radiation Dosimetry", Radiation Phys Chem, 1999, 54, 271-277. https://doi.org/10.1016/S0969-806X(98)00259-X
  8. Y. H. Kim and D. H. Chung, "Modification of Polypropylene by AA/MA Graft Copolymerization", J Korean Fiber Soc, 1990, 27, 50-61.
  9. H. F. Naguib, R. O. Aly, M. W. Sabaa, and S. M. Mokhtar, "Gamma Radiation Induced Graft Copolymerization of Vinylimidazole-Acrylic Acid onto Polypropylene Films", Polym Testing, 2003, 22, 825-830. https://doi.org/10.1016/S0142-9418(03)00018-7
  10. A. Seves, T. D. Marco, and A. Siciliano, "Blending Polypropylene with Hydrogenated Oligocyclopentadiene: A New Method for the Production of Dyeable Fibers", Dyes Pigm, 1995, 28, 19-29. https://doi.org/10.1016/0143-7208(94)00067-C
  11. J. Akrman and J. Prikryl, "Dyeing Behavior of Polypropylene Blend Fiber. I. Kinetic and Thermodynamic Parameters of the Dyeing System", J Appl Polym Sci, 1996, 62, 235-245. https://doi.org/10.1002/(SICI)1097-4628(19961003)62:1<235::AID-APP27>3.0.CO;2-2
  12. S. M. Burkinshaw, P. E. Froehling, and M. Mignanelli, "The Effect of Hyperbranched Polymers on the Dyeing of Polypropylene Fibres", Dyes Pigm, 2002, 53, 229-235. https://doi.org/10.1016/S0143-7208(02)00006-2
  13. C. Yu, C. Jiang, and Y. Chen, "Yttria-Polystyrene-Polypropylene Composite for Fine Dyeable Fibers", J Appl Polym Sci, 2008, 107, 1563-1567. https://doi.org/10.1002/app.27207
  14. C. Yu, C. Jiang, L. Chen, and Y. Chen, "Fine Disperse Dyeable Polypropylene Fiber from Polypropylene/Polystyrene Nano-Ceria Blends", J Appl Polym Sci, 2009, 113, 1953- 1958. https://doi.org/10.1002/app.30198
  15. T. A. Huy, R. Adhikari, T. Lupke, S. Henning, and G. H. Michler, "Molecular Deformation Mechanisms of Isotactic Polypropylene in $\alpha-$ and $\beta-Crystal$ Form by FTIR Spectroscopy", J Polym Sci; Polym Phys, 2004, 42, 4478- 4488. https://doi.org/10.1002/polb.20117
  16. S. V. Meille, D. R. Ferro, S. Bruckner, A. J. Lovinger, and F. J. Padden, "Structure of $\beta-Isotactic$ Polypropylene A Longstanding Structural Puzzle", Macromol, 1994, 27, 2615- 2622. https://doi.org/10.1021/ma00087a034
  17. S. V. Meille, S. Brcktmer, and W. Porzio, $\gamma$-Isotactic Polypropylene. A Structure with Nonparallel Chain Axes", Macromol, 1990, 23, 4114-4121. https://doi.org/10.1021/ma00220a014
  18. S. Vleeshouwers, "Simultaneous in-situ WAXS/SAXS and DSC Study of the Recrystallization and Melting Behaviour of the $\alpha$ and $\beta$ Form of iPP", Polymer, 1997, 38, 3213-3221. https://doi.org/10.1016/S0032-3861(96)00894-4
  19. B. Wang, C. Y. Li, J. Hanzlicek, S. Z. D. Cheng, P. H. Geil, J. Grebowicz, and R. M. Ho, ''Poly(trimethylene teraphthalate) Crystal Structure and Morphology in Different Length Scales", Polymer, 2001, 42, 7171-7180. https://doi.org/10.1016/S0032-3861(01)00046-5